Biyomedikal Kablosuz Eğim Ölçer Cihaz Tasarımı ve Ölçümlerinin Görüntü İşleme Yöntemi ile Karşılaştırılması
Year 2022,
, 46 - 51, 31.10.2022
Ahmet Çelik
,
Eren Gül
,
Deniz Kaptan
,
Ahmet Uslu
,
Okan Üzer
,
Bahadır Çokçetin
Abstract
İki yüzey arasındaki eğim farkı, fizik tedavi tanılarında, inşaat, makine, jeoloji, jeofizik, spor bilimleri, ortopedi gibi alanlarda ölçmeye ihtiyaç duyulan fiziksel bir büyüklüktür. Eğim farkını ölçmede kullanılan cihazlardan birisi ikili dijital eğim ölçerdir. İkili dijital eğim ölçer, iki yüzeyin yere göre yaptığı açılar arasındaki farkı tek seferde bulmayı sağlamaktadır. Eğim ölçer cihazları biyomedikal bir cihaz olarak özellikle fizik tedavi alanında yaygın kullanılmaktadır. Bu alanda kullanılan kablosuz eğim ölçer cihazları ithal ürünler olup fiyatlarının maliyetlerine oranla çok yüksek olduğu görülmektedir. Bu çalışmada, bir nesnenin yer çekimi referansına göre eğim farkını kablosuz olarak ölçen, ölçümü açı değeri olarak ekranda gösteren, kaydedebilen bir elektronik cihaz prototipi üretilmiştir. Cihaz üzerinden elde edilen verileri doğrulamak için eğim ölçer cihazının kalibrasyonu, harita mühendisliğinde kullanılan 0.001 derece hassasiyete sahip eğim ölçer cihaz ile yapılmıştır. Bu çalışma içerisinde; tasarlanan ahşap insan modeli üzerinde ölçümler yapılarak, kablosuz eğim ölçer cihaz ölçümleri ile görüntü işleme yöntemiyle bulunan ölçümler kıyaslanmıştır. Cihazın ölçtüğü açı ve görüntü işleme yöntemiyle ölçülen açı arasındaki en küçük açı farkı 0.013 derece bulunmuştur. Bu çalışmada, tasarlanan eğim ölçer cihazı daha üstün özelliklerde uygun maliyetli yerli tasarım ve üretim cihaz geliştirilmesi amaçlanmıştır.
Supporting Institution
TÜBİTAK
Thanks
TÜBİTAK kuruluşumuza, bu çalışmayı yaparken verdiği destekten dolayı çok teşekkür ederim.
References
- Daponte, P., De L., Vito, Lamonaca, F., Mazzilli, G., Picariello F. and Tudosa, I. (2018). A Stereo Vision Method for IMU-based Motion Tracking Systems Calibration, In IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2018, pp. 1-6, doi: 10.1109/MeMeA.2018.8438815.
- Jovanovic I. and Enright, J. (2020), Modeling and Calibration of Wide Range of Motion Biaxial Inclinometers for Celestial Navigation. In IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 136-141.
- Keskinoğlu, C., & Aydın, A. (2021). Wearable wireless low-cost electrogoniometer design with Kalman filter for joint range of motion measurement and 3D modeling of joint movements. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 235(2), 222–231, https://doi.org/10.1177/0954411920971398
- Liu, K., Nagamune K. and Oe, K. (2019). Angle Measurement of Two Rods in External Fixation Bracket Based on Image Processing. 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE) (pp. 1-6), 2019 doi:10.1109/ICECIE47765.2019.8974750.
- Meng, D., Shoepe T., and Vejarano, G. (2016). Accuracy Improvement on the Measurement of Human-Joint Angles, in IEEE Journal of Biomedical and Health Informatics, 20(2), 498-507, doi: 10.1109/JBHI.2015.2394467.
- NCD Risk Factor Collaboration, Distribution - Height > Height > Data Visualisations > NCD-RisC (ncdrisc.org) [Online]:https://www.ncdrisc.org/height-mean-distribution.html [Access Date:12.09.2022]
- Wang, X., Zhao, XF., Liu, C., Guo F. and J. Guo, (2019), Automatic Detection and Pennation Angle Measurement of Muscle Fascicles in Ultrasound Images Using Belt Linear Summation Transform. in IEEE Access, 7, 174391-174399, doi:10.1109/ACCESS.2019.2957123.
- Won, SP. and Golnaraghi, F. (2010). A Triaxial Accelerometer Calibration Method Using a Mathematical Model, In IEEE Transactions on Instrumentation and Measurement, 59(8), 2144-2153, doi: 10.1109/TIM.2009.2031849.
- Yang, W., Fang, B., Tang, YY., Qian, J., Qin X., and Yao, W. (2013). A Robust Inclinometer System With Accurate Calibration of Tilt and Azimuth Angles," in IEEE Sensors Journal, 13(6), 2313-2321, doi: 10.1109/JSEN.2013.2252891.
Design of Biomedical Wireless Inclinometer Device and Comparison of Measurements with Image Processing Method
Year 2022,
, 46 - 51, 31.10.2022
Ahmet Çelik
,
Eren Gül
,
Deniz Kaptan
,
Ahmet Uslu
,
Okan Üzer
,
Bahadır Çokçetin
Abstract
The slope difference between the two surfaces is a physical magnitude that needs to be measured in areas such as physical therapy diagnoses, construction, machinery, geology, geophysics, sports sciences, orthopedics. One of the devices used to measure the inclination difference is the wireless inclinometer. The wireless inclinometer allows you to find the slope of a surface relative to the ground. Inclinometers are widely used as a biomedical device, especially in the field of physical therapy. The wireless inclinometer devices used in this area are imported products and their prices are very high compared to their costs. In this study, an electronic device prototype was produced that can wirelessly measure the inclination difference of an object according to its gravity reference, show the measurement on the screen as an angle value, and record it. To verify the data obtained through the device, the calibration of the inclinometer is carried out with the inclinometer device with an accuracy of 0.001 degrees used in the Geomatics Engineering. In this study; by making measurements on the designed wooden human model, the measurements found by the image processing method were compared with the measurements of the wireless inclinometer device. The smallest angle difference between the angle measured by the device and the angle measured by the image processing method was found to be 0.013 degrees. In this study, it is aimed to develop a cost-effective domestic design and production device with superior features of the designed inclinometers.
References
- Daponte, P., De L., Vito, Lamonaca, F., Mazzilli, G., Picariello F. and Tudosa, I. (2018). A Stereo Vision Method for IMU-based Motion Tracking Systems Calibration, In IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2018, pp. 1-6, doi: 10.1109/MeMeA.2018.8438815.
- Jovanovic I. and Enright, J. (2020), Modeling and Calibration of Wide Range of Motion Biaxial Inclinometers for Celestial Navigation. In IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 136-141.
- Keskinoğlu, C., & Aydın, A. (2021). Wearable wireless low-cost electrogoniometer design with Kalman filter for joint range of motion measurement and 3D modeling of joint movements. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 235(2), 222–231, https://doi.org/10.1177/0954411920971398
- Liu, K., Nagamune K. and Oe, K. (2019). Angle Measurement of Two Rods in External Fixation Bracket Based on Image Processing. 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE) (pp. 1-6), 2019 doi:10.1109/ICECIE47765.2019.8974750.
- Meng, D., Shoepe T., and Vejarano, G. (2016). Accuracy Improvement on the Measurement of Human-Joint Angles, in IEEE Journal of Biomedical and Health Informatics, 20(2), 498-507, doi: 10.1109/JBHI.2015.2394467.
- NCD Risk Factor Collaboration, Distribution - Height > Height > Data Visualisations > NCD-RisC (ncdrisc.org) [Online]:https://www.ncdrisc.org/height-mean-distribution.html [Access Date:12.09.2022]
- Wang, X., Zhao, XF., Liu, C., Guo F. and J. Guo, (2019), Automatic Detection and Pennation Angle Measurement of Muscle Fascicles in Ultrasound Images Using Belt Linear Summation Transform. in IEEE Access, 7, 174391-174399, doi:10.1109/ACCESS.2019.2957123.
- Won, SP. and Golnaraghi, F. (2010). A Triaxial Accelerometer Calibration Method Using a Mathematical Model, In IEEE Transactions on Instrumentation and Measurement, 59(8), 2144-2153, doi: 10.1109/TIM.2009.2031849.
- Yang, W., Fang, B., Tang, YY., Qian, J., Qin X., and Yao, W. (2013). A Robust Inclinometer System With Accurate Calibration of Tilt and Azimuth Angles," in IEEE Sensors Journal, 13(6), 2313-2321, doi: 10.1109/JSEN.2013.2252891.