Global optimizasyon teknikleri olarak bilinen metasezgisel algoritmalar, çeşitli karmaşık ve gerçek optimizasyon problemlerini çözmek için başarıyla kullanılmaktadır. Metasezgisel yöntemler, fizik, sürü zekâsı ve biyolojinin farklı ilkelerinden ilham almaktadır. Denizatı Optimizasyon Algoritması (DOA), denizatlarının doğadaki hareket, avlanma ve üreme davranışlarından esinlenerek önerilmiş sürü zekasına tabanlı metasezgisel bir optimizasyon algoritmasıdır. Sürü zekasına dayalı metasezgisel optimizasyon algoritmalardan daha hızlı ve yüksek doğrulukta yakınsama elde etmek için farklı yöntemler önerilmiştir. Bu çalışmada, DOA’nın yakınsama hızını artırmak ve yerel çözümlerde takılıp kalmasını engellemek için rastgele değerler yerine Chebyshev, Circle, Gauss, Iterative, Logistic, Piecewise ve Sine olmak üzere yedi farklı kaotik harita uygulanmıştır. İlk kez bu çalışmada önerilen Kaotik Denizatı Optimizasyon Algoritması (KDOA), tek modlu, çok modlu ve sabit boyutlu çok modlu olmak üzere yedi farklı kıyaslama fonksiyonuna uygulanmıştır. Önerilen KDOA’nın performansını değerlendirmek için klasik DOA karşılaştırılmıştır. Deneysel sonuçlara göre, KDOA’nın yedi farklı kıyaslama fonksiyonunda klasik DOA’ya göre daha iyi sonuçlar elde ettiği gözlemlenmiştir.
Metaheuristic algorithms, known as global optimization techniques, have been successfully used to solve a variety of complex and real optimization problems. Metaheuristic methods are inspired by different principles of physics, swarm intelligence, and biology. The Seahorse Optimization Algorithm (SOA) is a suggested swarm intelligence-based metaheuristic optimization algorithm inspired by the movement, hunting, and breeding behavior of seahorses in nature. Different methods have been proposed to achieve faster and higher accuracy convergence than metaheuristic optimization algorithms based on swarm intelligence. In this study, seven different chaotic maps, namely Chebyshev, Circle, Gauss, Iterative, Logistic, Piecewise, and Sine, were applied instead of random values in order to increase the convergence speed of SOA and to prevent it from getting stuck in local solutions. The Chaotic Seahorse Optimization Algorithm (CSOA), proposed for the first time in this study, has been applied to seven different benchmarking functions. Classic SOA was compared to evaluate the performance of the proposed CSOA. According to the experimental results, it was observed that CSOA achieved better results than classical SOA in seven different comparison functions.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | December 31, 2022 |
Published in Issue | Year 2022 |