Research Article
BibTex RIS Cite

Fuzzy Inference Based A Posterior Decision-Making for Multi-Objective Diet Optimization Problem

Year 2022, , 41 - 47, 31.12.2022
https://doi.org/10.31590/ejosat.1216648

Abstract

We propose a Mamdani-Type Fuzzy Inference based posterior decision-making approach to multi-objective diet optimization problem. We optimize the multi-objective diet problem with evolutionary algorithms that result in tens/hundreds of non-dominated solutions which is too large to pick one of them by the decision-maker. Even though all the solutions are optimized for all the objectives simultaneously, not all objective functions may be equally important to a user and, also their importance may change for that user over time. Our main goal is to develop an applicable method for representing and incorporating a decision maker's (DM) instant preferences for objectives into decision-making stage. The FIS based decision making can guide users to decide on the most suitable menus. User's instant preferences for each objective form rule sets. Using Mamdani type FIS in the post-decision process of the multi-objective diet problem is a novel contribution. A desirability measure is calculated by using rule sets and membership functions considering the objective values, and based on the desirability measure the most preferred menu(s) are provided to the user. Our method can direct the DM to the region of interest in the search space of the multi-objective diet problem. Thus, the daily menu suggestions become more applicable, practical, and desirable for the users.

Supporting Institution

Tubitak

Project Number

2214-A

References

  • Zadeh, L.A. (1965). Fuzzy sets, Information and control, 8(3), 338–353.
  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, volume 16, John Wiley & Sons.
  • Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints., IEEE Trans. Evolutionary Computation, 18(4), 577–601.
  • Purshouse, R.C. and Fleming, P.J. (2007). On the evolutionary optimization of many conflicting objectives, IEEE Transactions on Evolutionary Computation, 11(6), 770–784.
  • Miettinen, K. (2012). Nonlinear multiobjective optimization, volume 12, Springer Science & Business Media.
  • Miettinen, K., Ruiz, F. and Wierzbicki, A.P., (2008). Introduction toMultiobjective Optimization: Interactive Approaches, Springer BerlinHeidelberg, Berlin, Heidelberg,pp.27–57,https://doi.org/10.1007/978-3-540-88908-3_2.
  • Balcı O. (2018), Master Thesis, Dietary planning using multi objective evolutionary algorithm with fuzzy preference integration, Istanbul Technical University, https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=T07x9CRE7ridOc2HWTZTFg&no=S0YxMo2sV_Lfc2lWbt5nsg
  • Türkmenoğlu, C., Etaner Uyar, A. Ş., & Kiraz, B. (2021). Recommending healthy meal plans by optimising nature-inspired many-objective diet problem. Health Informatics Journal, 27(1), 1460458220976719.
  • Pelletier, F.J. (2000). Metamathematics of Fuzzy Logic, Bulletin of Symbolic Logic, 6(3), 342–346.
  • Kellerer, H., Pferschy, U. and Pisinger, D., (2004). Introduction to NP-Completeness of knapsack problems, Knapsack problems, Springer, pp.483–493.
  • Lust, T. and Teghem, J. (2012). The multiobjective multidimensional knapsack problem: a survey and a new approach, International Transactions in Operational Research, 19(4), 495–520.
  • USDA (US Department of Agriculture) National Nutrient Database for Standard Reference Release 28. https://www.nal.usda.gov/fnic/dri-tables-and-application-reports (accessed: 20.05.2022)
  • WHO (2022). Weekly epidemiological update on COVID-19 - 29 June 2022, Technical Report, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
  • Abejón R, Batlle-Bayer L, Laso J, Bala A, Vazquez-Rowe I, Larrea-Gallegos G, Margallo M, Cristobal J, Puig R, Fullana-i-Palmer P, Aldaco R. (2020). Multi-Objective Optimization of Nutritional, Environmental and Economic Aspects of Diets Applied to the Spanish Context. Foods. ; 9(11):1677.

Çok Amaçlı Diyet Optimizasyon Problemi İçin Bulanık Çıkarıma Dayalı Sonradan Karar Verme

Year 2022, , 41 - 47, 31.12.2022
https://doi.org/10.31590/ejosat.1216648

Abstract

Çok amaçlı diyet optimizasyonu problemine Mamdani Tipi Bulanık Çıkarım tabanlı sonradan karar verme yaklaşımı öneriyoruz. Çok amaçlı diyet problemini, onlarca/yüzlerce baskılanamayan çözüm ile sonuçlanan Evrimsel Algoritmalarla optimize ediyoruz. EA’lar ile önerilen günlük menü sayısı, bunlardan birini seçmek için çok fazladır. Tüm çözümler aynı anda tüm amaçlar için optimize edilmiş olsa da, tüm amaç fonksiyonları bir kullanıcı için eşit derecede önemli olmayabilir ve ayrıca zaman içinde o kullanıcı için önemleri değişebilir. Ana hedefimiz, bir karar vericinin hedefler için anlık tercihlerini temsil edebileceği ve çok amaçlı diyet optimizasyon probleminin karar verme aşamasına dahil edebileceği için uygulanabilir bir yöntem geliştirmektir. Bulanık çıkarım tabanlı karar verme, kullanıcılara yüzlerce uygulanabilir çözüm arasından en uygun menüleri seçme konusunda rehberlik edebilir. Her amaç için kullanıcının anlık tercihlerini alarak yeni kural setleri oluştururuz. Mamdani tipi Bulanık Çıkarım Sistemi'nin çok amaçlı diyet probleminin karar sonrası sürecinde kullanılması yeni bir katkıdır. Amaç değerleri dikkate alınarak kural kümeleri ve üyelik fonksiyonları kullanılarak bir tercih edilirlik ölçüsü hesaplanır ve istenirlik ölçüsüne göre kullanıcıya en çok tercih edilen menü/menüler sunulur. KV’nin sözlü ifadeleriyle, yöntemimiz KV'yi çok amaçlı diyet probleminin optimizasyonu ile oluşturulan çözüm kümesinin arama uzayında ilgili bölgeye yönlendirebilir. Böylece günlük menü önerileri kullanıcılar için daha uygulanabilir, pratik ve arzu edilir hale gelmektedir.

Project Number

2214-A

References

  • Zadeh, L.A. (1965). Fuzzy sets, Information and control, 8(3), 338–353.
  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, volume 16, John Wiley & Sons.
  • Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints., IEEE Trans. Evolutionary Computation, 18(4), 577–601.
  • Purshouse, R.C. and Fleming, P.J. (2007). On the evolutionary optimization of many conflicting objectives, IEEE Transactions on Evolutionary Computation, 11(6), 770–784.
  • Miettinen, K. (2012). Nonlinear multiobjective optimization, volume 12, Springer Science & Business Media.
  • Miettinen, K., Ruiz, F. and Wierzbicki, A.P., (2008). Introduction toMultiobjective Optimization: Interactive Approaches, Springer BerlinHeidelberg, Berlin, Heidelberg,pp.27–57,https://doi.org/10.1007/978-3-540-88908-3_2.
  • Balcı O. (2018), Master Thesis, Dietary planning using multi objective evolutionary algorithm with fuzzy preference integration, Istanbul Technical University, https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=T07x9CRE7ridOc2HWTZTFg&no=S0YxMo2sV_Lfc2lWbt5nsg
  • Türkmenoğlu, C., Etaner Uyar, A. Ş., & Kiraz, B. (2021). Recommending healthy meal plans by optimising nature-inspired many-objective diet problem. Health Informatics Journal, 27(1), 1460458220976719.
  • Pelletier, F.J. (2000). Metamathematics of Fuzzy Logic, Bulletin of Symbolic Logic, 6(3), 342–346.
  • Kellerer, H., Pferschy, U. and Pisinger, D., (2004). Introduction to NP-Completeness of knapsack problems, Knapsack problems, Springer, pp.483–493.
  • Lust, T. and Teghem, J. (2012). The multiobjective multidimensional knapsack problem: a survey and a new approach, International Transactions in Operational Research, 19(4), 495–520.
  • USDA (US Department of Agriculture) National Nutrient Database for Standard Reference Release 28. https://www.nal.usda.gov/fnic/dri-tables-and-application-reports (accessed: 20.05.2022)
  • WHO (2022). Weekly epidemiological update on COVID-19 - 29 June 2022, Technical Report, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
  • Abejón R, Batlle-Bayer L, Laso J, Bala A, Vazquez-Rowe I, Larrea-Gallegos G, Margallo M, Cristobal J, Puig R, Fullana-i-Palmer P, Aldaco R. (2020). Multi-Objective Optimization of Nutritional, Environmental and Economic Aspects of Diets Applied to the Spanish Context. Foods. ; 9(11):1677.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cumali Türkmenoğlu 0000-0002-1026-0725

Ayşe Şima Uyar 0000-0003-1440-3831

Berna Kiraz 0000-0002-8428-3217

Project Number 2214-A
Publication Date December 31, 2022
Published in Issue Year 2022

Cite

APA Türkmenoğlu, C., Uyar, A. Ş., & Kiraz, B. (2022). Fuzzy Inference Based A Posterior Decision-Making for Multi-Objective Diet Optimization Problem. Avrupa Bilim Ve Teknoloji Dergisi(45), 41-47. https://doi.org/10.31590/ejosat.1216648