Research Article
BibTex RIS Cite

Otomatik Modülasyon Sınıflandırmasında Evrişimsel Sinir Ağlarının İncelenmesi

Year 2022, , 93 - 96, 31.12.2022
https://doi.org/10.31590/ejosat.1224925

Abstract

Otomatik modülasyon sınıflandırma (AMC) bir haberleşme sisteminde alıcıya gelen sinyalin modülasyon türünün belirlenmesi işlemidir. Derin öğrenme ise karmaşık veri yapılarını üstün performansla sınıflandırması nedeniyle son zamanlarda büyük ilgi gören bir makine öğrenmesi yöntemidir. Hem sivil hem de askeri uygulamalarda kritik bir rol oynayan otomatik modülasyon sınıflandırma işlemi, bu çalışmada derin öğrenme yaklaşımlarından biri olan Evrişimsel Sinir Ağları (CNN) kullanılarak incelenmiştir. Bu kapsamda ağ üzerinde yapılan değişikliklerin başarımı farklı sinyal-gürültü oranı (SNR) değerleri için yorumlanmıştır.

References

  • Avcı, E. (2008). Sayısal Modülasyon Tanıma Sistemleri İçin Bayes Karar Kuralları Sınıflandırıcısının Kullanımı. Engineering Sciences,3(1),https://dergipark.org.tr/tr/pub/nwsaeng/issue/19871/212968.
  • Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques : classical approaches and new trends. IET Communications, 1(2), 137–156. https://doi.org/10.1049/iet-com:20050176
  • Çukur, H. & Serbes, A. (2019). A Survey of Automatic Modulation Classification Algorithms for Cognitive Radio Applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , vol.25, no.4, pp.1-15.
  • Zhang, D., Ding, D., Zhang, B., Xie, C., Li, H. &Han, J. (2018). Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles. Sensors (Basel), (3):924. doi: 10.3390/s18030924. PMID: 29558434; PMCID: PMC5876703.
  • Rajendran, S., Meert, W., Giustiniano, D., Lenders, V. & Pollin, S. (2018). Deep Learning Models for Wireless Signal Classification With Distributed Low-Cost Spectrum Sensors. IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 3, pp. 433-445, doi:10.1109/TCCN.2018.2835460.
  • Xu, J. L., Su, W. & Zhou, M. (2011). Likelihood-Ratio Approaches to Automatic Modulation Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 4, pp. 455-469, July 2011, doi: 10.1109/TSMCC.2010.2076347.
  • Karahan, S. N. & Kalaycioğlu, A. (2020). Deep Learning Based Automatic Modulation Classification With Long-Short Term Memory Networks. 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302280.
  • O’Shea, T. J., Roy, T. & Clancy, T. C. (2018). Over-the-Air Deep Learning Based Radio Signal Classification. IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, doi: 10.1109/JSTSP.2018.2797022.
  • Çalışır, B. (2022). Radyo Haberleşmesinde Evrişimli Sinir Ağı Kullanılarak Yapılan Modülasyon Sınıflandırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi,34 (2) , 867-877 . DOI: 10.35234/fumbd.1141515
  • O'Shea, T. J., Corgan, J. & Clancy, T. C. (2016). Convolutional Radio Modulation Recognition Networks. Proc. Int. Conf. Eng. Appl. Neural Netw., pp. 213226.
  • Selim, A., Paisana, F., Arokkiam, J. A., Zhang, Y., Doyle, L. & DaSilva, L. A. (2017). Spectrum Monitoring For Radar Bands Using Deep Convolutional Neural Networks. Available: https://arxiv.org/abs/1705.00462. 2017.
  • Akeret, J., Chang, C., Lucchi, A., & Réfrégier, A. (2017). Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput., 18, 35-39.
  • Meng, F., Chen, P., Wu, L. & Wang, X. (2018). Automatic Modulation Classification: A Deep Learning Enabled Approach. IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10760-10772, doi: 10.1109/TVT.2018.2868698.
  • Kumar, Y., Sheoran, M., Jajoo, G. & Yadav, S. K. (2020). Automatic Modulation Classification Based on Constellation Density Using Deep Learning. IEEE Communications Letters, vol. 24, no. 6, pp. 1275-1278, doi: 10.1109/LCOMM.2020.2980840.
  • Huang, S., Jiang, Y., Gao, Y., Feng, Z. & Zhang, P. (2019). Automatic Modulation Classification Using Contrastive Fully Convolutional Network. IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1044-1047, doi: 10.1109/LWC.2019.2904956.

Convolutional Neural Networks Examination in Automatic Modulation Classification

Year 2022, , 93 - 96, 31.12.2022
https://doi.org/10.31590/ejosat.1224925

Abstract

Automatic Modulation Classification (AMC) is the process of determining the modulation type of the signal which is taken by receiver in a communication system. Deep learning is a machine learning method having recently attracted great attention due to its superior performance of classifying complex data structures. The automatic modulation classification process, having a critical role in both civil and military applications, is examined in this study by using Convolutional Neural Networks (CNN), one of the deep learning approaches. Within this scope, the performance of the changes made on the net has been interpreted for different signal-to-noise ratio (SNR) values.

References

  • Avcı, E. (2008). Sayısal Modülasyon Tanıma Sistemleri İçin Bayes Karar Kuralları Sınıflandırıcısının Kullanımı. Engineering Sciences,3(1),https://dergipark.org.tr/tr/pub/nwsaeng/issue/19871/212968.
  • Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques : classical approaches and new trends. IET Communications, 1(2), 137–156. https://doi.org/10.1049/iet-com:20050176
  • Çukur, H. & Serbes, A. (2019). A Survey of Automatic Modulation Classification Algorithms for Cognitive Radio Applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , vol.25, no.4, pp.1-15.
  • Zhang, D., Ding, D., Zhang, B., Xie, C., Li, H. &Han, J. (2018). Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles. Sensors (Basel), (3):924. doi: 10.3390/s18030924. PMID: 29558434; PMCID: PMC5876703.
  • Rajendran, S., Meert, W., Giustiniano, D., Lenders, V. & Pollin, S. (2018). Deep Learning Models for Wireless Signal Classification With Distributed Low-Cost Spectrum Sensors. IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 3, pp. 433-445, doi:10.1109/TCCN.2018.2835460.
  • Xu, J. L., Su, W. & Zhou, M. (2011). Likelihood-Ratio Approaches to Automatic Modulation Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 4, pp. 455-469, July 2011, doi: 10.1109/TSMCC.2010.2076347.
  • Karahan, S. N. & Kalaycioğlu, A. (2020). Deep Learning Based Automatic Modulation Classification With Long-Short Term Memory Networks. 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302280.
  • O’Shea, T. J., Roy, T. & Clancy, T. C. (2018). Over-the-Air Deep Learning Based Radio Signal Classification. IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, doi: 10.1109/JSTSP.2018.2797022.
  • Çalışır, B. (2022). Radyo Haberleşmesinde Evrişimli Sinir Ağı Kullanılarak Yapılan Modülasyon Sınıflandırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi,34 (2) , 867-877 . DOI: 10.35234/fumbd.1141515
  • O'Shea, T. J., Corgan, J. & Clancy, T. C. (2016). Convolutional Radio Modulation Recognition Networks. Proc. Int. Conf. Eng. Appl. Neural Netw., pp. 213226.
  • Selim, A., Paisana, F., Arokkiam, J. A., Zhang, Y., Doyle, L. & DaSilva, L. A. (2017). Spectrum Monitoring For Radar Bands Using Deep Convolutional Neural Networks. Available: https://arxiv.org/abs/1705.00462. 2017.
  • Akeret, J., Chang, C., Lucchi, A., & Réfrégier, A. (2017). Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput., 18, 35-39.
  • Meng, F., Chen, P., Wu, L. & Wang, X. (2018). Automatic Modulation Classification: A Deep Learning Enabled Approach. IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10760-10772, doi: 10.1109/TVT.2018.2868698.
  • Kumar, Y., Sheoran, M., Jajoo, G. & Yadav, S. K. (2020). Automatic Modulation Classification Based on Constellation Density Using Deep Learning. IEEE Communications Letters, vol. 24, no. 6, pp. 1275-1278, doi: 10.1109/LCOMM.2020.2980840.
  • Huang, S., Jiang, Y., Gao, Y., Feng, Z. & Zhang, P. (2019). Automatic Modulation Classification Using Contrastive Fully Convolutional Network. IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1044-1047, doi: 10.1109/LWC.2019.2904956.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Osman Kaya 0000-0003-4902-2166

Tansal Güçlüoğlu This is me 0000-0002-4090-005X

Publication Date December 31, 2022
Published in Issue Year 2022

Cite

APA Kaya, O., & Güçlüoğlu, T. (2022). Otomatik Modülasyon Sınıflandırmasında Evrişimsel Sinir Ağlarının İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(44), 93-96. https://doi.org/10.31590/ejosat.1224925