Research Article
BibTex RIS Cite

Akustik Zorlamanın Propan - Metan Karışımlarının Yanma Etkisine Deneysel Araştırılması

Year 2023, , 282 - 293, 31.08.2023
https://doi.org/10.31590/ejosat.1237823

Abstract

Günümüzde giderek artan enerji kaynağı ihtiyaçları küresel anlamda tüm ülkeler için büyük bir öneme sahiptir. Ülkeler son zamanlarda enerji ihtiyacının karşılanması ve mevcut enerji kaynaklarının tasarruflu kullanılması için önemli politikalar geliştirmektedir. Bunun yanı sıra enerji kaynaklarının yanması sonucu doğaya zarar veren emisyonları minimuma indirmek için çevreye daha az zarar veren alternatif enerji kaynaklarına yönelmişlerdir. Alternatif enerji kaynağı olması adına bu çalışmada propan gazını metan gazı ile zenginleştirilerek Tubitak destekli bir yakıcıda yanma üzerine etkisinin deneysel olarak incelemesi yapılmıştır. Metan gazı zenginleştirmesi %10, %20 ve %30 oranlarında belirlenmiş olup akustik zorlamanın yanma üzerine etkileri, emisyon değerleri ve alev üzerine olan etkileri incelenmiştir. Isıl güç 7 kW ve eş değerlik oranı (Փ)1,2 olup girdap değeri sabit (1.0) olarak deney gerçekleştirilmiştir. Deney akustik zorlamasız olarak gerçekleştirildiğinde metan oranı arttıkça açığa çıkan sıcaklık, alev parlaklığı ve ışık şiddetinin arttığı, dinamik basınç değerinin neredeyse değişmediği ve NOx değerinin ihmal edilebilecek kadar küçük olduğu, CO değerinin ise metan oranı arttıkça oksijen miktarına bağlı olarak azaldığı belirlenmiştir. 90 Hz, 185 Hz ve 330 Hz akustik zorlama altında yapılan deneylerde, zorlama değeri arttıkça sıcaklık ve alev parlaklığı artarken; NOx değerinin ihmal edilebilecek kadar küçük olduğu, CO değerinin ise akustik zorlamasız olarak gerçekleştirilen deneylere göre azaldığı görülmüştür.

Supporting Institution

yoktur

References

  • Abd Alla G, Badr O, Soliman H, Rabbo AM. 2000. Exhaust emissions from an indirect injection dual-fuel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 214:333-40
  • Boretti, A. (2013). Conversion of a heavy duty truck diesel engine with an innovative power turbine connected to the crankshaft through a continuously variable transmission to operate compression ignition dual fuel diesel-LPG. Fuel Processing Technology, 113, 97-108.
  • Elnajjar, E., Selim, M. Y., & Hamdan, M. O. (2013). Experimental study of dual fuel engine performance using variable LPG composition and engine parameters. Energy conversion and Management, 76, 32-42.
  • Evans RL. Automotive Engine Alternatives 2013.
  • Fujisawa, N., Iwasaki, K., Fujisawa, K., Yamagata, Y., 2019. Flow visualization study of a diffusion flame under acoustic excitation. Fuel, 251:506–513.
  • Gibson, C., Polk, A., Shoemaker, N., Srinivasan, K., & Krishnan, S. (2011). Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine. Journal of Engineering for Gas Turbines and Power, 133(9).
  • Guerry ES, Raihan MS, Srinivasan KK, Krishnan SR, Sohail A. Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion. Applied energy. 2016;162:99-113.
  • Jian D, Xiaohong G, Gesheng L, Xintang Z. 2001. Study on diesel-LPG dual fuel engines. SAE Technical Paper, 0148-7191.
  • Kang J, Chu S, Lee J, Kim G, Min K. Effect of operating parameters on diesel/propane dual fuel premixed compression ignition in a diesel engine. International Journal of Automotive Technology. 2018;19:27-35.
  • Keating E. 1993. Applied Combustion. Marcel Decker. Inc New York.
  • Koca D. Experimental investigation of the combined use of diesel and LPG fuels in diesel engines 2013.
  • Lefebvre, A. H., & Ballal, D. R. (2010). Gas turbine combustion: alternative fuels and emissions. CRC press.
  • Liu Z, Karim GA. 1995. The ignition delay period in dual fuel engines. SAE transactions. 354-62.
  • Merlo, N., Boushaki, T., Chauveau, C., Persis, S. P., Pillier, L., Sarh, B, Gökalp, Ġ., 2013. Experimental study of oxygen enrichment effects on turbulent nonpremixed swirling flames. Energy and Fuels, 27:6191–6197.
  • Mokhatab, S., Poe, W. A., & Mak, J. (2018). Handbook of natural gas transmission and processing: principles and practices. Gulf professional publishing.
  • Ngang EA, Abbe CVN. Experimental and numerical analysis of the performance of a diesel engine retrofitted to use LPG as secondary fuel. Applied Thermal Engineering. 2018;136:462-74.
  • Polk, A. C., Carpenter, C. D., Scott Guerry, E., Dwivedi, U., Kumar Srinivasan, K., Rajan Krishnan, S., & Rowland, Z. L. (2014). Diesel-ignited propane dual fuel low temperature combustion in a heavy-duty diesel engine. Journal of Engineering for Gas Turbines and Power, 136(9).
  • Papagiannakis R, Hountalas D. 2003. Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual fuel diesel engine. Applied Thermal Engineering. 23:353-65.
  • Papagiannakis R, Rakopoulos C, Hountalas D, Rakopoulos D. 2010. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions. Fuel. 89:1397-406.
  • Prabhakar, B., Jayaraman, S., Vander Wal, R., & Boehman, A. (2015). Experimental studies of high efficiency combustion with fumigation of dimethyl ether and propane into diesel engine intake air. Journal of Engineering for Gas Turbines and Power, 137(4).
  • Raihan, M. S. (2014). A comparative study of diesel ignited methane and propane dual fuel low
  • temperature combustion in a single cylinder research engine. Mississippi State University.
  • Rink K, Lefebvre A. Influence of fuel drop size and combustor operating conditions on pollutant emissions. Society of Auto Engineers, Warrendale, PA, 1986.
  • Seaton A, Godden D, MacNee W, Donaldson K. 1995. Particulate air pollution and acute health effects. The lancet. 345:176-8.
  • Shenghua L, Ziyan W, Jiang R. 2003. Development of compressed natural gas/diesel dual-fuel turbocharged compression ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 217:839-45.
  • Stewart J, Clarke A, Chen R. 2007. An experimental study of the dual-fuel performance of a small compression ignition diesel engine operating with three gaseous fuels. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 221:943-56.
  • Turns SR. Introduction to combustion: McGraw-Hill Companies New York, NY, USA; 1996.
  • Yılmaz, İ., Yılmaz, H., Çam, Ö. Sentetik Gaz Yakıtların Yanma Kararsızlıklarının Deneysel İncelenmesi”.

Experimental Investigation of Acoustic Forcing on the Combustion Effect of Propane - Methane Mixtures

Year 2023, , 282 - 293, 31.08.2023
https://doi.org/10.31590/ejosat.1237823

Abstract

Today, the ever-increasing energy resource needs are of great importance for all countries in the global sense. Countries have recently been developing important policies to meet their energy needs and to use existing energy resources efficiently. In addition, in order to minimize the emissions that harm the nature as a result of the burning of energy sources, they have turned to alternative energy sources that are less harmful to the environment. In order to be an alternative energy source, in this study, the effect of enriching propane gas with methane gas on combustion in a Tubitak supported combustor was experimentally investigated. The enrichment of methane gas was determined at the rates of 10%, 20% and 30%, and the effects of acoustic stress on combustion, emission values and the effects on the flame were investigated. The thermal power was 7 kW and the equivalence ratio (Փ) was 1.2, and the experiment was carried out with a constant eddy value (1.0). When the experiment was carried out without acoustic stress, it was determined that the temperature, flame brightness and light intensity increased as the methane ratio increased, the dynamic pressure value almost did not change, the NOx value was negligibly small, and the CO value decreased depending on the oxygen amount as the methane ratio increased. In the experiments carried out under 90 Hz, 185 Hz and 330 Hz acoustic stress, as the forcing value increases, the temperature and flame brightness increase; It was observed that the NOx value was negligibly small, and the CO value decreased compared to the experiment performed without acoustic stress.

References

  • Abd Alla G, Badr O, Soliman H, Rabbo AM. 2000. Exhaust emissions from an indirect injection dual-fuel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 214:333-40
  • Boretti, A. (2013). Conversion of a heavy duty truck diesel engine with an innovative power turbine connected to the crankshaft through a continuously variable transmission to operate compression ignition dual fuel diesel-LPG. Fuel Processing Technology, 113, 97-108.
  • Elnajjar, E., Selim, M. Y., & Hamdan, M. O. (2013). Experimental study of dual fuel engine performance using variable LPG composition and engine parameters. Energy conversion and Management, 76, 32-42.
  • Evans RL. Automotive Engine Alternatives 2013.
  • Fujisawa, N., Iwasaki, K., Fujisawa, K., Yamagata, Y., 2019. Flow visualization study of a diffusion flame under acoustic excitation. Fuel, 251:506–513.
  • Gibson, C., Polk, A., Shoemaker, N., Srinivasan, K., & Krishnan, S. (2011). Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine. Journal of Engineering for Gas Turbines and Power, 133(9).
  • Guerry ES, Raihan MS, Srinivasan KK, Krishnan SR, Sohail A. Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion. Applied energy. 2016;162:99-113.
  • Jian D, Xiaohong G, Gesheng L, Xintang Z. 2001. Study on diesel-LPG dual fuel engines. SAE Technical Paper, 0148-7191.
  • Kang J, Chu S, Lee J, Kim G, Min K. Effect of operating parameters on diesel/propane dual fuel premixed compression ignition in a diesel engine. International Journal of Automotive Technology. 2018;19:27-35.
  • Keating E. 1993. Applied Combustion. Marcel Decker. Inc New York.
  • Koca D. Experimental investigation of the combined use of diesel and LPG fuels in diesel engines 2013.
  • Lefebvre, A. H., & Ballal, D. R. (2010). Gas turbine combustion: alternative fuels and emissions. CRC press.
  • Liu Z, Karim GA. 1995. The ignition delay period in dual fuel engines. SAE transactions. 354-62.
  • Merlo, N., Boushaki, T., Chauveau, C., Persis, S. P., Pillier, L., Sarh, B, Gökalp, Ġ., 2013. Experimental study of oxygen enrichment effects on turbulent nonpremixed swirling flames. Energy and Fuels, 27:6191–6197.
  • Mokhatab, S., Poe, W. A., & Mak, J. (2018). Handbook of natural gas transmission and processing: principles and practices. Gulf professional publishing.
  • Ngang EA, Abbe CVN. Experimental and numerical analysis of the performance of a diesel engine retrofitted to use LPG as secondary fuel. Applied Thermal Engineering. 2018;136:462-74.
  • Polk, A. C., Carpenter, C. D., Scott Guerry, E., Dwivedi, U., Kumar Srinivasan, K., Rajan Krishnan, S., & Rowland, Z. L. (2014). Diesel-ignited propane dual fuel low temperature combustion in a heavy-duty diesel engine. Journal of Engineering for Gas Turbines and Power, 136(9).
  • Papagiannakis R, Hountalas D. 2003. Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual fuel diesel engine. Applied Thermal Engineering. 23:353-65.
  • Papagiannakis R, Rakopoulos C, Hountalas D, Rakopoulos D. 2010. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions. Fuel. 89:1397-406.
  • Prabhakar, B., Jayaraman, S., Vander Wal, R., & Boehman, A. (2015). Experimental studies of high efficiency combustion with fumigation of dimethyl ether and propane into diesel engine intake air. Journal of Engineering for Gas Turbines and Power, 137(4).
  • Raihan, M. S. (2014). A comparative study of diesel ignited methane and propane dual fuel low
  • temperature combustion in a single cylinder research engine. Mississippi State University.
  • Rink K, Lefebvre A. Influence of fuel drop size and combustor operating conditions on pollutant emissions. Society of Auto Engineers, Warrendale, PA, 1986.
  • Seaton A, Godden D, MacNee W, Donaldson K. 1995. Particulate air pollution and acute health effects. The lancet. 345:176-8.
  • Shenghua L, Ziyan W, Jiang R. 2003. Development of compressed natural gas/diesel dual-fuel turbocharged compression ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 217:839-45.
  • Stewart J, Clarke A, Chen R. 2007. An experimental study of the dual-fuel performance of a small compression ignition diesel engine operating with three gaseous fuels. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 221:943-56.
  • Turns SR. Introduction to combustion: McGraw-Hill Companies New York, NY, USA; 1996.
  • Yılmaz, İ., Yılmaz, H., Çam, Ö. Sentetik Gaz Yakıtların Yanma Kararsızlıklarının Deneysel İncelenmesi”.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kuzey Emre Er This is me 0000-0002-5740-4319

Murat Taştan 0000-0001-9988-2397

Early Pub Date September 10, 2023
Publication Date August 31, 2023
Published in Issue Year 2023

Cite

APA Er, K. E., & Taştan, M. (2023). Experimental Investigation of Acoustic Forcing on the Combustion Effect of Propane - Methane Mixtures. Avrupa Bilim Ve Teknoloji Dergisi(51), 282-293. https://doi.org/10.31590/ejosat.1237823