Research Article
BibTex RIS Cite

FLG/InP Schottky Kontaklarının Elektronik Özellikleri

Year 2023, , 6 - 11, 31.03.2023
https://doi.org/10.31590/ejosat.1265636

Abstract

Grafen (Gr), yeni elektronik, fotonik ve kompozit malzemelerin geliştirilmesinde büyük ilgi görmektedir. Gr'nin fiziksel özellikleri katman sayısına bağlı olarak değişebilmekte ve bu benzersiz özelliği onu farklı elektronik uygulamalar için potansiyel bir malzeme yapmaktadır. Bu çalışmada InP yarı iletken yüzeyi üzerine birkaç katmanlı grafen (FLG) filmi döndürerek kaplandı ve FLG/n-InP Schottky kontakları üretildi. FLG nano filminin özellikleri ve kalitesi Raman spektroskopisi kullanılarak belirlendi. Schottky kontaklarının idealite faktörü, bariyer yüksekliği ve seri direnci gibi parametreler akım-gerilim (I-V) eğrileri kullanılarak hesaplandı. Gauss dağılımı ile Gr/InP kontaklarının ortalama idealite faktörü =1,47, ortalama engel yüksekliği değerleri ise <φb>=0,68 eV olarak bulundu. Standart sapma değerleri idealite faktörü için σ=0,32 ve engel yüksekliği için σ=0,06 eV olarak hesaplanmıştır. Ayrıca Cheung fonksiyonlarından seri direnç değerleri hesaplanmış ve literatür ile uyumlu bulunmuştur. Son olarak logaritmik I-V karakteristikleri incelenerek Gr/n-InP yapısının akım iletim mekanizmaları ortaya konulmuştur.

References

  • Balaram, N., Rajagopal Reddy, V., Sekhar Reddy, P. R., Janardhanam, V., & Choi, C.-J. (2018). Microstructural, chemical states and electrical properties of Au/CuO/n-InP heterojunction with a cupric oxide interlayer. Vacuum, 152, 15-24. doi:https://doi.org/10.1016/j.vacuum.2018.02.041
  • Baltakesmez, A., Taşer, A., Kudaş, Z., Güzeldir, B., Ekinci, D., & Sağlam, M. (2019). Barrier Height Modification of n-InP Using a Silver Nanoparticles Loaded Graphene Oxide as an Interlayer in a Wide Temperature Range. Journal of Electronic Materials, 48(5), 3169-3182. doi:10.1007/s11664-019-07088-8
  • Bhaskar Reddy, M., Ashok Kumar, A., Janardhanam, V., Rajagopal Reddy, V., & Narasimha Reddy, P. (2009). Current–voltage–temperature (I–V–T) characteristics of Pd/Au Schottky contacts on n-InP (111). Current Applied Physics, 9(5), 972-977. doi:10.1016/j.cap.2008.10.001
  • Cimilli Çatır, F. E. (2020). The Structural, Optical, and Electrical Characterization of Ti/n‐InP Schottky Diodes with Graphene Oxide Interlayer Deposited by Spray Pyrolysis Method. physica status solidi (a), 217(19). doi:10.1002/pssa.202000125
  • Cimilli, F. E., Efeoğlu, H., Sağlam, M., & Türüt, A. (2009a). Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In Schottky diodes. Journal of Materials Science: Materials in Electronics, 20(2), 105-112. doi:10.1007/s10854-008-9635-z
  • Cimilli, F. E., Sağlam, M., Efeoğlu, H., & Türüt, A. (2009b). Temperature-dependent current–voltage characteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height. Physica B: Condensed Matter, 404(8-11), 1558-1562. doi:10.1016/j.physb.2009.01.018
  • Cimilli, F. E., Sağlam, M., & Türüt, A. (2007). Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes. Semiconductor Science and Technology, 22(8), 851-854. doi:10.1088/0268-1242/22/8/003
  • Çetin, H., & Ayyildiz, E. (2010). On barrier height inhomogeneities of Au and Cu/n-InP Schottky contacts. Physica B: Condensed Matter, 405(2), 559-563. doi:10.1016/j.physb.2009.09.065
  • Devi, V. L., Jyothi, I., & Reddy, V. R. (2012). Analysis of temperature-dependent Schottky barrier parameters of Cu–Au Schottky contacts to n-InP. Canadian Journal of Physics, 90(1), 73-81. doi:10.1139/p11-142
  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Geim, A. K. (2006). Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18), 187401. doi:10.1103/PhysRevLett.97.187401
  • Gülnahar, M. (2015). Electrical characteristics of an Ag/n-InP Schottky diode based on temperature-dependent current–Voltage and capacitance–voltage measurements. Metallurgical and Materials Transactions A, 46(9), 3960-3971.
  • Kauling, A. P., Seefeldt, A. T., Pisoni, D. P., Pradeep, R. C., Bentini, R., Oliveira, R. V. B., Castro Neto, A. H. (2018). The Worldwide Graphene Flake Production. 30(44), 1803784. doi:https://doi.org/10.1002/adma.201803784
  • Lakshmi Devi, V., Jyothi, I., Rajagopal Reddy, V., & Choi, C.-J. J. T. O. A. P. J. (2012). Schottky barrier parameters and interfacial reactions of rapidly annealed Au/Cu bilayer metal scheme on n-type InP. 5(1).
  • Lee, H. C., Liu, W.-W., Chai, S.-P., Mohamed, A. R., Aziz, A., Khe, C.-S., Hashim, U. J. R. a. (2017). Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. 7(26), 15644-15693.
  • Li, W., Tan, C., Lowe, M. A., Abruna, H. D., & Ralph, D. C. J. A. n. (2011). Electrochemistry of individual monolayer graphene sheets. 5(3), 2264-2270.
  • Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Wu, D. J. A. m. (2010). Graphene‐on‐silicon Schottky junction solar cells. 22(25), 2743-2748.
  • Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Ruoff, R. S. (2009). Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 9(12), 4359-4363. doi:10.1021/nl902623y
  • Mott, N. F., & Gurney, R. W. (1948). Electronic processes in ionic crystals: Clarendon Press.
  • Rajagopal Reddy, V. (2015). Electrical and interfacial properties of Au/n-InP Schottky contacts with nickel phthalocyanine (NiPc) interlayer. Indian Journal of Physics, 89(5), 463-469. doi:10.1007/s12648-014-0602-7
  • Reddy, V. R., Reddy, Y. M., Padmasuvarna, R., & Narasappa, T. L. (2015). Ru/Ti Schottky Contacts on N-type In-P (100): Temperature Dependence of Current-Voltage (I-V) Characteristics. Procedia Materials Science, 10, 666-672. doi:10.1016/j.mspro.2015.06.060
  • Sağlam, M., Cimilli, F. E., & Türüt, A. (2004). Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier diodes. Physica B: Condensed Matter, 348(1-4), 397-403. doi:10.1016/j.physb.2004.01.002
  • Singh, S., Powar, S., Mahala, P., Majee, S., Eshwar, T., Kumar, A. Microstructures. (2018). Fabrication and characterization of graphene based silicon Schottky solar cell. 120, 637-641.
  • Türüt, A. (2020). Oncurrent-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics, 44(4), 302-347. doi:10.3906/fiz-2007-11
  • Wang, Y. Y., Ni, Z. H., Yu, T., Shen, Z. X., Wang, H. M., Wu, Y. H., Shen Wee, A. T. J. T. J. o. P. C. C. (2008). Raman studies of monolayer graphene: the substrate effect. 112(29), 10637-10640.

Electronic Properties of FLG/InP Schottky Contacts

Year 2023, , 6 - 11, 31.03.2023
https://doi.org/10.31590/ejosat.1265636

Abstract

Graphene (Gr) is of great interest in the development of new electronic, photonic, and composite materials. The physical properties of Gr can vary depending on the number of layers, and this unique property makes it a potential material for different electronic applications. In this study, few-layer graphene (FLG) film was spin-coated onto the InP semiconductor surface and the FLG/n-InP Schottky contact was produced. The properties and quality of the FLG nano-film were determined by using Raman spectroscopy. Parameters such as ideality factor, barrier height, and series resistance of Schottky contacts were calculated using current-voltage (I-V) curves. With the Gaussian distribution, the mean ideality factor of the Gr/InP contacts was found to be =1,47, and the mean barrier height values were found to be <φb>=0.68 eV. The standard deviation values were calculated as σ=0.32 for the ideality factor and σ=0.06 eV for the barrier height. In addition, the series resistance values were calculated from the Cheung functions and were found to be in agreement with the literature. Finally, the current conduction mechanisms of the Gr/n-InP structure were revealed by examining the logarithmic I-V characteristics.

References

  • Balaram, N., Rajagopal Reddy, V., Sekhar Reddy, P. R., Janardhanam, V., & Choi, C.-J. (2018). Microstructural, chemical states and electrical properties of Au/CuO/n-InP heterojunction with a cupric oxide interlayer. Vacuum, 152, 15-24. doi:https://doi.org/10.1016/j.vacuum.2018.02.041
  • Baltakesmez, A., Taşer, A., Kudaş, Z., Güzeldir, B., Ekinci, D., & Sağlam, M. (2019). Barrier Height Modification of n-InP Using a Silver Nanoparticles Loaded Graphene Oxide as an Interlayer in a Wide Temperature Range. Journal of Electronic Materials, 48(5), 3169-3182. doi:10.1007/s11664-019-07088-8
  • Bhaskar Reddy, M., Ashok Kumar, A., Janardhanam, V., Rajagopal Reddy, V., & Narasimha Reddy, P. (2009). Current–voltage–temperature (I–V–T) characteristics of Pd/Au Schottky contacts on n-InP (111). Current Applied Physics, 9(5), 972-977. doi:10.1016/j.cap.2008.10.001
  • Cimilli Çatır, F. E. (2020). The Structural, Optical, and Electrical Characterization of Ti/n‐InP Schottky Diodes with Graphene Oxide Interlayer Deposited by Spray Pyrolysis Method. physica status solidi (a), 217(19). doi:10.1002/pssa.202000125
  • Cimilli, F. E., Efeoğlu, H., Sağlam, M., & Türüt, A. (2009a). Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In Schottky diodes. Journal of Materials Science: Materials in Electronics, 20(2), 105-112. doi:10.1007/s10854-008-9635-z
  • Cimilli, F. E., Sağlam, M., Efeoğlu, H., & Türüt, A. (2009b). Temperature-dependent current–voltage characteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height. Physica B: Condensed Matter, 404(8-11), 1558-1562. doi:10.1016/j.physb.2009.01.018
  • Cimilli, F. E., Sağlam, M., & Türüt, A. (2007). Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes. Semiconductor Science and Technology, 22(8), 851-854. doi:10.1088/0268-1242/22/8/003
  • Çetin, H., & Ayyildiz, E. (2010). On barrier height inhomogeneities of Au and Cu/n-InP Schottky contacts. Physica B: Condensed Matter, 405(2), 559-563. doi:10.1016/j.physb.2009.09.065
  • Devi, V. L., Jyothi, I., & Reddy, V. R. (2012). Analysis of temperature-dependent Schottky barrier parameters of Cu–Au Schottky contacts to n-InP. Canadian Journal of Physics, 90(1), 73-81. doi:10.1139/p11-142
  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Geim, A. K. (2006). Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18), 187401. doi:10.1103/PhysRevLett.97.187401
  • Gülnahar, M. (2015). Electrical characteristics of an Ag/n-InP Schottky diode based on temperature-dependent current–Voltage and capacitance–voltage measurements. Metallurgical and Materials Transactions A, 46(9), 3960-3971.
  • Kauling, A. P., Seefeldt, A. T., Pisoni, D. P., Pradeep, R. C., Bentini, R., Oliveira, R. V. B., Castro Neto, A. H. (2018). The Worldwide Graphene Flake Production. 30(44), 1803784. doi:https://doi.org/10.1002/adma.201803784
  • Lakshmi Devi, V., Jyothi, I., Rajagopal Reddy, V., & Choi, C.-J. J. T. O. A. P. J. (2012). Schottky barrier parameters and interfacial reactions of rapidly annealed Au/Cu bilayer metal scheme on n-type InP. 5(1).
  • Lee, H. C., Liu, W.-W., Chai, S.-P., Mohamed, A. R., Aziz, A., Khe, C.-S., Hashim, U. J. R. a. (2017). Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. 7(26), 15644-15693.
  • Li, W., Tan, C., Lowe, M. A., Abruna, H. D., & Ralph, D. C. J. A. n. (2011). Electrochemistry of individual monolayer graphene sheets. 5(3), 2264-2270.
  • Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Wu, D. J. A. m. (2010). Graphene‐on‐silicon Schottky junction solar cells. 22(25), 2743-2748.
  • Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Ruoff, R. S. (2009). Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 9(12), 4359-4363. doi:10.1021/nl902623y
  • Mott, N. F., & Gurney, R. W. (1948). Electronic processes in ionic crystals: Clarendon Press.
  • Rajagopal Reddy, V. (2015). Electrical and interfacial properties of Au/n-InP Schottky contacts with nickel phthalocyanine (NiPc) interlayer. Indian Journal of Physics, 89(5), 463-469. doi:10.1007/s12648-014-0602-7
  • Reddy, V. R., Reddy, Y. M., Padmasuvarna, R., & Narasappa, T. L. (2015). Ru/Ti Schottky Contacts on N-type In-P (100): Temperature Dependence of Current-Voltage (I-V) Characteristics. Procedia Materials Science, 10, 666-672. doi:10.1016/j.mspro.2015.06.060
  • Sağlam, M., Cimilli, F. E., & Türüt, A. (2004). Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier diodes. Physica B: Condensed Matter, 348(1-4), 397-403. doi:10.1016/j.physb.2004.01.002
  • Singh, S., Powar, S., Mahala, P., Majee, S., Eshwar, T., Kumar, A. Microstructures. (2018). Fabrication and characterization of graphene based silicon Schottky solar cell. 120, 637-641.
  • Türüt, A. (2020). Oncurrent-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics, 44(4), 302-347. doi:10.3906/fiz-2007-11
  • Wang, Y. Y., Ni, Z. H., Yu, T., Shen, Z. X., Wang, H. M., Wu, Y. H., Shen Wee, A. T. J. T. J. o. P. C. C. (2008). Raman studies of monolayer graphene: the substrate effect. 112(29), 10637-10640.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fulya Esra Cimilli Çatır 0000-0002-0757-3130

Murat Gülnahar 0000-0003-2801-3690

Publication Date March 31, 2023
Published in Issue Year 2023

Cite

APA Cimilli Çatır, F. E., & Gülnahar, M. (2023). Electronic Properties of FLG/InP Schottky Contacts. Avrupa Bilim Ve Teknoloji Dergisi(49), 6-11. https://doi.org/10.31590/ejosat.1265636