Research Article
BibTex RIS Cite

Kayısı Tozundan Elde Edilen Çözeltilerin Farklı Sıcaklık ve Konsantrasyonlardaki Viskozitelerinin Kayma Hızıyla Değişimi

Year 2023, , 294 - 300, 31.08.2023
https://doi.org/10.31590/ejosat.1265932

Abstract

Kimyasal ilave edilmeden, doğallığı ve besin değeri bozulmadan toz haline getirilen kayısı, unlu mamüller, süt ürünleri ve bebek mamalarında kullanılabilmektedir. Kurutma, öğütme ve paketleme ile kayısının raf ömrü uzatılmaktadır. Bu tozlar su gibi solventlerde kolaylıkla çözünebilmekte ve sektörlerde takviye malzemesi olarak tercih edilmektedir. Bu çalışmada kayısı tozunun reolojik özellikleri incelenmiştir. Farklı derişimlerde ve kayma hızlarında hazırlanan kayısı tozlarının viskozitelerinin değişimi gözlemlenmiştir. Kayısı tozlarının konsantrasyonu arttıkça viskozitenin arttığı görülmektedir. Elde edilen karışımdaki sıcaklık artışı viskoziteyi azaltmaktadır. Reolojik çalışmalarda akışkanın kayma hızı arttıkça viskozitesinin düştüğü tespit edilmiştir. Kayısı tozları ile üretilen çözeltinin (akışkan) kayma incelmesi (pseudoplastik) davranışı gösterdiği görülmektedir. Deneysel çalışmalarda elde edilen veriler modellenerek korelasyon katsayıları hesaplanmıştır. Literatürde non-Newtonian akışkanlar için geliştirilen modellerden power-law modeli ile deneysel verilerin en yüksek R2 değerine sahip olduğu görülmüştür.

References

  • Akin, E.B., Karabulut, İ., and Topcu, A. (2008). Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties, Food Chemistry, 107(2), 939-948.
  • Akpolat, M., Kök, B. V., and Aydoğmuş, E. (2022). Research on the rheological properties of asphalt binder modified by fume silica and crumb rubber compound, Periodica Polytechnica Civil Engineering, 66(2), 502-515.
  • Altan, A., Kus, S., and Kaya A. (2005). Rheological behaviour and time dependent characterization of gilaboru juice (Viburnum opulus L.). Food Science and Technology International, 11(2), 129–137.
  • Arslan, E., Yener, M.E., and Esin A. (2005). Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends, Journal of Food Engineering, 69 (2), 167-172.
  • Bashir, O., Hussain, S.Z., Amin, T., Jan, N., Gani, G., Bhat, S.A., and Jabeen, A. (2021). The optimization of spray-drying process for the development of apricot powder using response surface methodology, British Food Journal, 124(11), 3724-3747.
  • Corrêa, R., Haminiuk, C., Sora, G., Bergamasco, R., and Vieira, A. Antioxidant and rheological properties of guava jam with added concentrated grape juice. Journal of the Science of Food and Agriculture, 94, 146–152, 2014.
  • Deng, L., Xiong, C., Pei, Y., Zhu, Z., Zheng, X., Zhang, Y., and Xiao, H. (2022). Effects of various storage conditions on total phenolic, carotenoids, antioxidant capacity, and color of dried apricots, Food Control, 136, 108846.
  • Diamante, L., and Umemoto, M. (2015). Rheological Properties of Fruits and Vegetables: A Review, International Journal of Food Properties, 18 (6), 1191-1210.
  • Huang, W., Zuoshan Feng, Z., Reheman Aila, R., Yakun Hou, Y., Alan Carne, A., and Bekhit, A.E.A. (2019). Effect of pulsed electric fields (PEF) on physico-chemical properties, β-carotene and antioxidant activity of air-dried apricots, Food Chemistry, 291, 253-262.
  • Igual, M., García-Martínez, E., Martín-Esparza, M.E., and Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and functional value of dried apricot, Food Research International, 47 (2), 284-290.
  • Karataş, M., Aydoğmuş, E., and Arslanoğlu, H. (2022). Production and characterization of gum exudate from apricot tree: modeling the rheology of the obtained extract, Pigment & Resin Technology, 1-9.
  • Kaya, A., and Belibagli, K.B. (2002). Rheology of solid Gazıantep Pekmez, Journal of Food Engineering, 54 (3), 221-226, 2002.
  • Kök, B. V., Aydoğmuş, E., Yilmaz, M., and Akpolat, M. (2021). Investigation on the properties of new palm-oil-based polyurethane modified bitumen, Construction and Building Materials, 289, 123152.
  • Krokida, M., Maroulis, Z., and Saravacos, G. (2001). Rheological properties of fluid fruit and vegetable puree products: Compilation of literature data. International Journal of Food Properties, 4 (2), 179–200.
  • Martinelli, L, Gabas, A.L., and Romero, J.T. (2007). Thermodynamic and quality properties of lemon juice powder as affected by maltodextrin and arabic gum, Drying Technol, 25, 2035-2045.
  • Quek, M.C., Chin, N.L., and Yusof, Y.A. (2013). Modelling of rheological behaviour of soursop juice concentrates using shear rate–temperature–concentration superposition J. Food Eng., 118, 380-386.
  • Rahaman, A., et al. (2020). Effect of pulsed electric fields processing on physiochemical properties and bioactive compounds of apricot juice, J Food Process Eng, 43(8), e13449.
  • Salehi, F. (2020). Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. Food Measure 14, 2472–2488.
  • Telis-Romero, J., Beristain, C.I., Gabas, A.L., and Telis, V.R.N. (2007). Effect of apparent viscosity on the pressure drop during fluidized bed drying of soursop pulp. Chemical Engineering and Processing, 46 (7), 684 – 694.
  • Togrul, H., and Arslan, N. (2004). Mathematical model for prediction of apparent viscosity of molasses, J. Food Eng., 62, 281-289.
  • Xu, G.Y., Liao, A.M., Huang, J.H., Zhang, J.G., Thakur, K., and Wei Z.J. (2019). The rheological properties of differentially extracted polysaccharides from potatoes peels, International Journal of Biological Macromolecules, 137, 1-7.
  • Yanen, C., Aydoğmuş, E., and Solmaz, M.Y. (2020). Determination of suitable rheological model for polyethylene glycols and silica particle mixtures, Middle East Journal of Science, 6(2), 85-93.
  • Yanen, C., Solmaz, M.Y., and Aydoğmuş, E. (2020). Investigation of the effect of shear thickening fluid and fabric structure on inter-yarn friction properties in Twaron fabrics, European Journal of Technique, 10(2), 501-510.
  • Yanen, C., Solmaz, M. Y., and Aydoğmuş, E. (2021). Determination of rheological properties and dispersion quality of shear thickening fluid, Avrupa Bilim ve Teknoloji Dergisi, 28, 781-784.
  • Yanen, C., Solmaz, M. Y., Aydoğmuş, E., and Arslanoğlu, H. (2023). Investigation of rheological behavior of produced HSTF and evaluation of energy dissipation performance by application to Twaron fabric, Colloid and Polymer Science, 301, 147-162.
  • Zamani, Z., and Razavi, S.M.A. (2021). Physicochemical, rheological and functional properties of Nettle seed (Urtica pilulifera) gum, Food Hydrocolloids, 112, 106304-106313.

Variation of Viscosities of Solutions Obtained from Apricot Powder at Different Temperatures and Concentrations with Shear Rate

Year 2023, , 294 - 300, 31.08.2023
https://doi.org/10.31590/ejosat.1265932

Abstract

Apricot, which is turned into powder without adding chemicals, without spoiling its nature and nutritional value, can be used in bakery products, dairy products and baby food. The shelf life of the apricot is extended by drying, grinding and packaging. These powders can be easily dissolved in solvents such as water and are preferred as reinforcement material in the sectors. In this study, the rheological properties of apricot powder have been investigated. The change of viscosities of apricot powder prepared at different concentrations and shear rates has been observed. It is seen that the viscosity increases as the concentration of apricot powders raise. The temperature increase in the resulting mixture decreases the viscosity. In rheological studies, it has been determined that as the shear rate of the fluid increases, its viscosity decreases. It is seen that the solution (fluid) produced with apricot powders exhibits shear thinning behavior (pseudoplastic). The correlation coefficients are calculated by modeling the data obtained in experimental studies. It has been found that the experimental data with power-law model, among the models developed for non-Newtonian fluids in the literature, have the highest R2 value.

References

  • Akin, E.B., Karabulut, İ., and Topcu, A. (2008). Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties, Food Chemistry, 107(2), 939-948.
  • Akpolat, M., Kök, B. V., and Aydoğmuş, E. (2022). Research on the rheological properties of asphalt binder modified by fume silica and crumb rubber compound, Periodica Polytechnica Civil Engineering, 66(2), 502-515.
  • Altan, A., Kus, S., and Kaya A. (2005). Rheological behaviour and time dependent characterization of gilaboru juice (Viburnum opulus L.). Food Science and Technology International, 11(2), 129–137.
  • Arslan, E., Yener, M.E., and Esin A. (2005). Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends, Journal of Food Engineering, 69 (2), 167-172.
  • Bashir, O., Hussain, S.Z., Amin, T., Jan, N., Gani, G., Bhat, S.A., and Jabeen, A. (2021). The optimization of spray-drying process for the development of apricot powder using response surface methodology, British Food Journal, 124(11), 3724-3747.
  • Corrêa, R., Haminiuk, C., Sora, G., Bergamasco, R., and Vieira, A. Antioxidant and rheological properties of guava jam with added concentrated grape juice. Journal of the Science of Food and Agriculture, 94, 146–152, 2014.
  • Deng, L., Xiong, C., Pei, Y., Zhu, Z., Zheng, X., Zhang, Y., and Xiao, H. (2022). Effects of various storage conditions on total phenolic, carotenoids, antioxidant capacity, and color of dried apricots, Food Control, 136, 108846.
  • Diamante, L., and Umemoto, M. (2015). Rheological Properties of Fruits and Vegetables: A Review, International Journal of Food Properties, 18 (6), 1191-1210.
  • Huang, W., Zuoshan Feng, Z., Reheman Aila, R., Yakun Hou, Y., Alan Carne, A., and Bekhit, A.E.A. (2019). Effect of pulsed electric fields (PEF) on physico-chemical properties, β-carotene and antioxidant activity of air-dried apricots, Food Chemistry, 291, 253-262.
  • Igual, M., García-Martínez, E., Martín-Esparza, M.E., and Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and functional value of dried apricot, Food Research International, 47 (2), 284-290.
  • Karataş, M., Aydoğmuş, E., and Arslanoğlu, H. (2022). Production and characterization of gum exudate from apricot tree: modeling the rheology of the obtained extract, Pigment & Resin Technology, 1-9.
  • Kaya, A., and Belibagli, K.B. (2002). Rheology of solid Gazıantep Pekmez, Journal of Food Engineering, 54 (3), 221-226, 2002.
  • Kök, B. V., Aydoğmuş, E., Yilmaz, M., and Akpolat, M. (2021). Investigation on the properties of new palm-oil-based polyurethane modified bitumen, Construction and Building Materials, 289, 123152.
  • Krokida, M., Maroulis, Z., and Saravacos, G. (2001). Rheological properties of fluid fruit and vegetable puree products: Compilation of literature data. International Journal of Food Properties, 4 (2), 179–200.
  • Martinelli, L, Gabas, A.L., and Romero, J.T. (2007). Thermodynamic and quality properties of lemon juice powder as affected by maltodextrin and arabic gum, Drying Technol, 25, 2035-2045.
  • Quek, M.C., Chin, N.L., and Yusof, Y.A. (2013). Modelling of rheological behaviour of soursop juice concentrates using shear rate–temperature–concentration superposition J. Food Eng., 118, 380-386.
  • Rahaman, A., et al. (2020). Effect of pulsed electric fields processing on physiochemical properties and bioactive compounds of apricot juice, J Food Process Eng, 43(8), e13449.
  • Salehi, F. (2020). Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. Food Measure 14, 2472–2488.
  • Telis-Romero, J., Beristain, C.I., Gabas, A.L., and Telis, V.R.N. (2007). Effect of apparent viscosity on the pressure drop during fluidized bed drying of soursop pulp. Chemical Engineering and Processing, 46 (7), 684 – 694.
  • Togrul, H., and Arslan, N. (2004). Mathematical model for prediction of apparent viscosity of molasses, J. Food Eng., 62, 281-289.
  • Xu, G.Y., Liao, A.M., Huang, J.H., Zhang, J.G., Thakur, K., and Wei Z.J. (2019). The rheological properties of differentially extracted polysaccharides from potatoes peels, International Journal of Biological Macromolecules, 137, 1-7.
  • Yanen, C., Aydoğmuş, E., and Solmaz, M.Y. (2020). Determination of suitable rheological model for polyethylene glycols and silica particle mixtures, Middle East Journal of Science, 6(2), 85-93.
  • Yanen, C., Solmaz, M.Y., and Aydoğmuş, E. (2020). Investigation of the effect of shear thickening fluid and fabric structure on inter-yarn friction properties in Twaron fabrics, European Journal of Technique, 10(2), 501-510.
  • Yanen, C., Solmaz, M. Y., and Aydoğmuş, E. (2021). Determination of rheological properties and dispersion quality of shear thickening fluid, Avrupa Bilim ve Teknoloji Dergisi, 28, 781-784.
  • Yanen, C., Solmaz, M. Y., Aydoğmuş, E., and Arslanoğlu, H. (2023). Investigation of rheological behavior of produced HSTF and evaluation of energy dissipation performance by application to Twaron fabric, Colloid and Polymer Science, 301, 147-162.
  • Zamani, Z., and Razavi, S.M.A. (2021). Physicochemical, rheological and functional properties of Nettle seed (Urtica pilulifera) gum, Food Hydrocolloids, 112, 106304-106313.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mukaddes Karataş 0000-0001-5803-6821

Ercan Aydoğmuş 0000-0002-1643-2487

Early Pub Date September 10, 2023
Publication Date August 31, 2023
Published in Issue Year 2023

Cite

APA Karataş, M., & Aydoğmuş, E. (2023). Variation of Viscosities of Solutions Obtained from Apricot Powder at Different Temperatures and Concentrations with Shear Rate. Avrupa Bilim Ve Teknoloji Dergisi(51), 294-300. https://doi.org/10.31590/ejosat.1265932