Research Article
BibTex RIS Cite

Thermo-Economic Analysis of Transcritical Carbon Dioxide Refrigeration Cycle

Year 2018, , 152 - 156, 31.12.2018
https://doi.org/10.31590/ejosat.481224

Abstract

The use of refrigerants such as CFC and HCFC will have been
completely finalized in 2030 because of the damage to the ozone layer by the
international protocols. For this reason, CO2 refrigerant cooling
cycles, which are considered to be an alternative refrigerant and give proper
performance results, have begun to be used. In this study, thermo-economic analysis of transcritical carbon dioxide
refrigeration cycle was examined. The necessary thermodynamic data for analysis
were obtained by CoolPack program. The coefficient of performance (COP) and the
annual cost analysis of the cycle in the different working conditions were examined.
Energy consumption cost values required for the calculations were taken from
Republic of Turkey Energy Market Regulatory Authority.  The highest COP value of cycle for among all
the working condition is found as 3.524 for 0 oC evaporator
temperature, 30 oC gas cooler output temperature. The lowest annual
cost values were found depending on the evaporator temperature change in transcritical
carbon dioxide refrigeration cycle as 3269.376 Turkish Lira (TL). Obtained
results were compared.

References

  • Kılıç, B. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler, Heat Mass Transfer, vol. 48, pp.1207-1217, 2012.
  • Akdemir, Ö. and Güngör, A. CO2 soğutma çevrimlerinin maksimum performans analizi, Isı Bilimi ve Tekniği Dergisi, vol. 30, pp.37-43, 2010.
  • Llopi, R. Cabello, R. Sánchez, D. and Torrella, E. Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling, International Journal of Refrigeration, DOI: 10.1016/j.ijrefrig.2015.03.016, 2015.
  • Bai, T. Yan, G. and Yu, J. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector, Energy, vol. 84, pp.325-335, 2015.
  • Goodarzi, M. and Gheibi, A. Performance analysis of a modified trans-critical CO2 refrigeration cycle, Applied Thermal Engineering, vol. 75, pp.1118-1125, 2015.
  • Paride, G. Brian, E. and Giovanni, C. Advanced exergy analysis of a R744 booster refrigeration system with parallel compression, Energy, vol. 107, pp.562-571, 2016.
  • Haitao, H. Trygve, M. Petter, N. Armin, H. Guoliang, D. Qingnan, Huang. and Jingjing, Y. Performance analysis of an R744 ground source heat pump system with air-cooled and water-cooled gas coolers, International Journal of Refrigeration, vol. 63, pp.72-86, 2016.
  • https://www.ohio.edu/mechanical/thermo/property_tables/CO2/index.html
  • http://www.epdk.org.tr/

Kritik Nokta Üstü Karbon Dioksit Soğutma Çevriminin Termo-Ekonomik Analizi

Year 2018, , 152 - 156, 31.12.2018
https://doi.org/10.31590/ejosat.481224

Abstract

CFC ve HCFC gibi soğutucuların kullanımı, uluslararası protokoller tarafından ozon tabakasına verilen hasar nedeniyle 2030'da tamamen sonuçlandırılacaktır. Bu nedenle, alternatif bir soğutucu olarak kabul edilen ve uygun performans sonuçları veren CO2 soğutucu akışkanlı soğutma çevrimleri kullanılmaya başlanmıştır. Bu çalışmada kritik nokta üstü karbon dioksit soğutma çevriminin termo-ekonomik analizi incelenmiştir. Analiz için gerekli olan termodinamik veriler, CoolPack programından elde edilmiştir. Farklı çalışma koşullarında performans katsayısı (COP) ve çevrimim yıllık maliyet analizi incelenmiştir. Hesaplamalar için gereken enerji tüketimi maliyet değerleri Türkiye Cumhuriyeti Enerji Piyasası Düzenleme Kurumu'ndan alınmıştır. Tüm çalışma koşulları için en yüksek COP değeri, 0 oC evaporatör sıcaklığı, 30 oC gaz soğutucu çıkış sıcaklığı için 3.524 olarak bulunmuştur. En düşük yıllık maliyet değerleri kritik nokta üstü karbon dioksit soğutma çevrimindeki evaporatör sıcaklık değişimlerine bağlı olarak 3269.376 TL (TL) olarak bulunmuştur. Elde edilen sonuçlar karşılaştırılmıştır.

References

  • Kılıç, B. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler, Heat Mass Transfer, vol. 48, pp.1207-1217, 2012.
  • Akdemir, Ö. and Güngör, A. CO2 soğutma çevrimlerinin maksimum performans analizi, Isı Bilimi ve Tekniği Dergisi, vol. 30, pp.37-43, 2010.
  • Llopi, R. Cabello, R. Sánchez, D. and Torrella, E. Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling, International Journal of Refrigeration, DOI: 10.1016/j.ijrefrig.2015.03.016, 2015.
  • Bai, T. Yan, G. and Yu, J. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector, Energy, vol. 84, pp.325-335, 2015.
  • Goodarzi, M. and Gheibi, A. Performance analysis of a modified trans-critical CO2 refrigeration cycle, Applied Thermal Engineering, vol. 75, pp.1118-1125, 2015.
  • Paride, G. Brian, E. and Giovanni, C. Advanced exergy analysis of a R744 booster refrigeration system with parallel compression, Energy, vol. 107, pp.562-571, 2016.
  • Haitao, H. Trygve, M. Petter, N. Armin, H. Guoliang, D. Qingnan, Huang. and Jingjing, Y. Performance analysis of an R744 ground source heat pump system with air-cooled and water-cooled gas coolers, International Journal of Refrigeration, vol. 63, pp.72-86, 2016.
  • https://www.ohio.edu/mechanical/thermo/property_tables/CO2/index.html
  • http://www.epdk.org.tr/
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bayram Kılıç 0000-0002-8577-1845

Publication Date December 31, 2018
Published in Issue Year 2018

Cite

APA Kılıç, B. (2018). Thermo-Economic Analysis of Transcritical Carbon Dioxide Refrigeration Cycle. Avrupa Bilim Ve Teknoloji Dergisi(14), 152-156. https://doi.org/10.31590/ejosat.481224