Research Article
BibTex RIS Cite

Q-Taylor Series Method for Solving Fuzzy Multiobjective Linear Fractional Programming Problem

Year 2019, , 10 - 17, 31.03.2019
https://doi.org/10.31590/ejosat.500930

Abstract

In this work, we present a
q -Taylor series method for fuzzy multiobjective linear fractional programming problems (FMOLFPPs). In
q -calculus,
q -Taylor series is a
q -series expansion of a function with respect to
q -derivatives. In the proposed approach,
membership functions are defined to be piecewise linear. Membership functions associated with each objective of fuzy multiobjective
linear fractional programming problem transformed by using
q -Taylor series are unified. Thus, the problem is reduced to a single
objective. To show the efficiency of the
q -Taylor series method, we applied the method to some problems.

References

  • Bellmann R.E., Zadeh L.A. (1970). Decision making in a fuzzy environment, Manag. Sci., (17), 141-164.
  • Bitran G.R., Novaes A.G. (1973). Linear programming with a fractional objective function, Operation Research (21) 22–29.
  • Chakraborty M., Gupta S. (2002). Fuzzy mathematical programming for multi objective linear fractional programming problem, Fuzzy Sets and Systems (125) 335–342.
  • Charnes A., Cooper W. (1962). Programming with linear fractional functions, Naval Research Logistics Quarterly (9) 181-186.
  • Craven B.D. (1988). Fractional Programming, Heldermann Verlag, Berlin,
  • Dinkelbach W. (1967). On nonlinear fractional programming, Manage. Sci. (13) 492–498.
  • Toksari, M. D. (2008). Taylor series approach to fuzzy multiobjective linear fractional programming, Information Sciences (178) 1189–1204
  • Dutta D., Tiwari R.N., Rao J.R. (1993). Fuzzy approaches for multiple criteria linear fractional optimization: a comment, Fuzzy Sets and Systems (54) 347–349.
  • Dutta D., Tiwari R.N., Rao J.R. (1992). Multiple objective linear fractional programming a fuzzy set theoretic approach, Fuzzy Sets and Systems (52) 39–45.
  • Gilmore P.C., Gomory R.E., (1963). A linear programming approach to the cutting stock problem. Oper. Res. (11) 863–888.
  • Gupta P., Bhatia D. (2001). Sensitivity analysis in fuzzy multiobjective linear fractional programming problem, Fuzzy Sets and Systems (122) 229–236.
  • Guzel N., Sivri M. (2005). Taylor series solution of multiobjective linear fractional programming problem, Trakya University Journal Science (6) 80–87.
  • Hannan E.L., (1981). Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems (6) 235–248.
  • Hitosi M.S., Takahashi Y.J. (1992). Pareto optimality for multiobjective linear fractional programming problems with fuzzy parameters, Information Sciences (63) 33–53.
  • Kac V., Cheung P. (2002). Quantum Calculus, Springer, New York,
  • Kornbluth J.S.H., Steuer R.E. (1981). Multiple objective linear fractional programming, Management Science (27) 1024–1039.
  • Luhandjula M.K. (1984). Fuzzy approaches for multiple objective linear fractional optimization, Fuzzy Sets and Systems (13) 11–23.
  • Nykowski I., Zolkiski Z. (1985). A compromise procedure for the multiple objective linear fractional programming problem, European Journal of Operational Research (19) 91–97.
  • Pal B.B., Moitra B.N., Maulik U. (2003). A goal programming procedure for fuzzy multiobjective linear fractional programming problem, Fuzzy Sets and Systems (139) 395–405.
  • Rajkovic P.M., Stankovic M.S., Marinkovic S.D. (2003). On q-iterative methods for solving equations and systems. Novi Sad J.Math (33) 127-137.
  • Saad O. (2007). On stability of proper efficient solutions in multiobjective fractional programming problems under fuzziness, Mathematical and Computer Modelling (45) 221–231.
  • Sakawa M., Kato K. (1988). Interactive decision-making for multiobjective linear fractional programming problems with block angular structure involving fuzzy numbers, Fuzzy Sets and Systems (97) 19–31.
  • Schaible S. (1976). Fractional programming I: duality, Manage. Sci. (22) 658–667.
  • Tiwari R.N., Dharmar S., Rao J.R. (1987). Fuzzy goal programming an additive model, Fuzzy Sets and Systems (24) 27–34.
  • Cevikel A. C., Ahlatcioglu M. (2010). Solutions for fuzzy matrix games, Computer& Mathematics with Applications, (60) 399-410.
  • Zadeh L. (2005). Toward a generalized theory of uncertainty (GTU) an outline, Information Sciences (172) 1–40.
  • Zimmermann H.J. (1978). Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems (1) 45–55.
  • Zimmermann H.J. (1987). Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston.

Bulanık Çokamaçlı Lineer Kesirli Proğramlama Problemlerinin Çözümleri için Q- Taylor Seri Metodu

Year 2019, , 10 - 17, 31.03.2019
https://doi.org/10.31590/ejosat.500930

Abstract

Bu çalışmada, bulanık çok amaçlı lineer kesirli proğramlama problemlerinin (BÇALPP) çözümleri için
q -Taylor seri metodu
sunulmuştur. Q-Analizde,
q -Taylor serisi
q -Türevlerine göre bir fonksiyonun
q -Serisine genişlemesidir. Önerilen yaklaşımda,
üyelik fonksiyonları parçalı lineer fonksiyonlar olarak tanımlanmaktadır. Q-Taylor serileri kullanılarak dönüştürülen bulanık çok
amaçlı lineer kesirli programlama problemleri üyelik fonksiyonları ile birleştirilmiştir. Böylece problem tek bir amaca indirgenmiştir.
q -Taylor seri metodunun etkinliğini göstermek için birkaç problemler çözülmüştür.

References

  • Bellmann R.E., Zadeh L.A. (1970). Decision making in a fuzzy environment, Manag. Sci., (17), 141-164.
  • Bitran G.R., Novaes A.G. (1973). Linear programming with a fractional objective function, Operation Research (21) 22–29.
  • Chakraborty M., Gupta S. (2002). Fuzzy mathematical programming for multi objective linear fractional programming problem, Fuzzy Sets and Systems (125) 335–342.
  • Charnes A., Cooper W. (1962). Programming with linear fractional functions, Naval Research Logistics Quarterly (9) 181-186.
  • Craven B.D. (1988). Fractional Programming, Heldermann Verlag, Berlin,
  • Dinkelbach W. (1967). On nonlinear fractional programming, Manage. Sci. (13) 492–498.
  • Toksari, M. D. (2008). Taylor series approach to fuzzy multiobjective linear fractional programming, Information Sciences (178) 1189–1204
  • Dutta D., Tiwari R.N., Rao J.R. (1993). Fuzzy approaches for multiple criteria linear fractional optimization: a comment, Fuzzy Sets and Systems (54) 347–349.
  • Dutta D., Tiwari R.N., Rao J.R. (1992). Multiple objective linear fractional programming a fuzzy set theoretic approach, Fuzzy Sets and Systems (52) 39–45.
  • Gilmore P.C., Gomory R.E., (1963). A linear programming approach to the cutting stock problem. Oper. Res. (11) 863–888.
  • Gupta P., Bhatia D. (2001). Sensitivity analysis in fuzzy multiobjective linear fractional programming problem, Fuzzy Sets and Systems (122) 229–236.
  • Guzel N., Sivri M. (2005). Taylor series solution of multiobjective linear fractional programming problem, Trakya University Journal Science (6) 80–87.
  • Hannan E.L., (1981). Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems (6) 235–248.
  • Hitosi M.S., Takahashi Y.J. (1992). Pareto optimality for multiobjective linear fractional programming problems with fuzzy parameters, Information Sciences (63) 33–53.
  • Kac V., Cheung P. (2002). Quantum Calculus, Springer, New York,
  • Kornbluth J.S.H., Steuer R.E. (1981). Multiple objective linear fractional programming, Management Science (27) 1024–1039.
  • Luhandjula M.K. (1984). Fuzzy approaches for multiple objective linear fractional optimization, Fuzzy Sets and Systems (13) 11–23.
  • Nykowski I., Zolkiski Z. (1985). A compromise procedure for the multiple objective linear fractional programming problem, European Journal of Operational Research (19) 91–97.
  • Pal B.B., Moitra B.N., Maulik U. (2003). A goal programming procedure for fuzzy multiobjective linear fractional programming problem, Fuzzy Sets and Systems (139) 395–405.
  • Rajkovic P.M., Stankovic M.S., Marinkovic S.D. (2003). On q-iterative methods for solving equations and systems. Novi Sad J.Math (33) 127-137.
  • Saad O. (2007). On stability of proper efficient solutions in multiobjective fractional programming problems under fuzziness, Mathematical and Computer Modelling (45) 221–231.
  • Sakawa M., Kato K. (1988). Interactive decision-making for multiobjective linear fractional programming problems with block angular structure involving fuzzy numbers, Fuzzy Sets and Systems (97) 19–31.
  • Schaible S. (1976). Fractional programming I: duality, Manage. Sci. (22) 658–667.
  • Tiwari R.N., Dharmar S., Rao J.R. (1987). Fuzzy goal programming an additive model, Fuzzy Sets and Systems (24) 27–34.
  • Cevikel A. C., Ahlatcioglu M. (2010). Solutions for fuzzy matrix games, Computer& Mathematics with Applications, (60) 399-410.
  • Zadeh L. (2005). Toward a generalized theory of uncertainty (GTU) an outline, Information Sciences (172) 1–40.
  • Zimmermann H.J. (1978). Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems (1) 45–55.
  • Zimmermann H.J. (1987). Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Adem Cengiz Çevikel 0000-0002-7359-3156

Publication Date March 31, 2019
Published in Issue Year 2019

Cite

APA Çevikel, A. C. (2019). Q-Taylor Series Method for Solving Fuzzy Multiobjective Linear Fractional Programming Problem. Avrupa Bilim Ve Teknoloji Dergisi(15), 10-17. https://doi.org/10.31590/ejosat.500930