Research Article
BibTex RIS Cite

A simple approach for comparing performance of gasoline general-purpose engines at maximum power

Year 2019, , 269 - 279, 31.03.2019
https://doi.org/10.31590/ejosat.513253

Abstract

The single or double cylinder, low power output engines used in machines
such as garden hoe machines, chainsaws, generators, lawnmowers, mini tractors
are called general-purpose engines. Each engine manufacturer has engines with
its own unique structural designs. The power of these engines generally varies
depending on the swept volume. However, when the engine catalogs are examined,
the characteristics such as stroke ratio, maximum power speed, and compression
ratio are different. In this study, we present a simple thermodynamic model in
which the gasoline general-purpose engines, whose swept volume, compression
ratio and stroke ratio are different, can be compared by taking into account
their performance at maximum power, friction, irreversibility, exhaust and heat
losses. For the numerical study, by comparing the physical properties of 10
general purpose engines of 5 different manufacturers, their performance was
compared by performing thermodynamic modeling in the conditions where they
produced maximum power. The power values in the catalogs of the engines and the
power values calculated according to the thermodynamic model were very close to
each other and this thermodynamic model was used. According to the
thermodynamic model, maximum cycle temperatures, specific fuel consumption and
power density of the motors were compared. In addition, the heat balance of
each engines is created. Regardless of the brand, model and stroke volume and
effective power, engine parameters are examined according to stroke ratio and
specific fuel consumption. As a result of the study, the maximum cycle
temperature, power density and mechanical efficiency decrease with the increase
in the specific fuel consumption and the stroke ratio. However, the increase in
the stroke ratio increases the specific fuel consumption. According to the
obtained results, it is seen that the characteristics such as course rate and
compression ratio as well as simple properties such as stroke volume and engine
power are important and effective parameters for comparison. As a result of
this study, it can be seen that the thermodynamic model presented can be used
to compare gasoline general purpose engines with different physical properties.

References

  • Ansermet, J. P., & Brechet, S. D. (2019). Principles of Thermodynamics. Cambridge University Press.
  • Arabaci, E. (2018a). Artık gaz kesri ve kurs oranının tersinmez Otto çevriminin performansına ve entropi üretimine etkileri. Avrupa Bilim ve Teknoloji Dergisi, (14), 83-89.
  • Arabaci, E. (2018b). A new approach to the determination of heat balance in general purpose gasoline engines. International Conference on Technology and Science. Retrieved January 01, 2019, from http://dergipark.gov.tr/sjmakeu/page/5766
  • Chase Jr, M. W. (1998). NIST-JANAF thermochemical tables. J. Phys. Chem. Ref. Data, Monograph, 9.
  • Diesel, R. (1898). U.S. Patent No. US608845A. Washington, DC: U.S. Patent and Trademark Office.
  • Dobrucali, E. (2016). The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine. Energy, 103, 119-126.
  • Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, 53(5-6), 1289-1297.
  • Ebrahimi, R. (2012). Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and kurse length. Applied Mathematical Modelling, 36(9), 4073-4079.
  • Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., 124(1).
  • Ebrahimi, R. (2016). Second law analysis on an air-standard Miller engine. exergy, 2, 17.
  • Ebrahimi, R., & Dehkordi, N. S. (2018). Effects of design and operating parameters on entropy generation of a dual cycle. Journal of Thermal Analysis and Calorimetry, 133(3), 1609-1616.
  • Ebrahimi, R., & Sherafati, M. (2013). Thermodynamic simulation of performance of a dual cycle with kurse length and volumetric efficiency. Journal of thermal analysis and calorimetry, 111(1), 951-957.
  • Ganesan, V. (2012). Internal combustion engines. New York: McGraw-Hill.
  • Ge, Y. L., Chen, L., & Sun, F. R. (2008). Finite-time thermodynamic modelling and analysis of an irreversible diesel cycle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(5), 887-894.
  • Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, 122, 403-409.
  • Ge, Y., Chen, L., & Sun, F. (2009). Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Mathematical and Computer Modelling, 50(1-2), 101-108.
  • Ge, Y., Chen, L., Qin, X., & Xie, Z. (2017). Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid. The European Physical Journal Plus, 132(5), 209.
  • Ge, Y., Chen, L., Sun, F., & Wu, C. (2005). Effects of heat transfer and friction on the performance of an irreversible air-standard Miller cycle. International Communications in Heat and Mass Transfer, 32(8), 1045-1056.
  • Gonca, G. (2017). Performance Analysis of an Atkinson Cycle Engine under Effective Power and Effective Power Density Conditions. Acta Physica Polonica, A., 132(4).
  • Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782.
  • Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782.
  • Gonca, G., Sahin, B., & Ust, Y. (2013). Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 54, 285-290.
  • Heywood, J. B. (2018). Internal combustion engines. New York: McGraw-Hill.
  • Hohenberg, G. F. (1979). Advanced approaches for heat transfer calculations (No. 790825). SAE Technical paper.
  • Kaushik, S. C., Tyagi, S. K., & Kumar, P. (2017). Finite time thermodynamics of power and refrigeration cycles. Springer International Publishing.
  • Otto, N. A. (1887). U.S. Patent No. US365701A. Washington, DC: U.S. Patent and Trademark Office.
  • Özdemir, A. O., Kılıç, B., Arabacı, E., & Orman, R. Ç. (2018). Effect of mean piston speed and residual gas fraction on performance of a four-kurse irreversible Otto cycle engine. Scientific Journal of Mehmet Akif Ersoy University, 1(1), 6-12.
  • Wu, C. (2002). Intelligent computer based engineering thermodynamics and cycle analysis. New York: Nova Science.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2017). Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. The European Physical Journal Plus, 132(5), 203.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, 124, 46-57.
  • You, J., Chen, L., Wu, Z., & Sun, F. (2018). Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Science China Technological Sciences, 61(3), 453-463.

Benzinli genel amaçlı motorların maksimum güçteki performanslarının karşılaştırılması için basit bir yaklaşım

Year 2019, , 269 - 279, 31.03.2019
https://doi.org/10.31590/ejosat.513253

Abstract

Bahçe çapa makineleri, zincirli testereleri, jeneratörler, çim biçme
makineleri, mini traktörler gibi makinelerde kullanılan tek veya çift
silindirli, düşük güç çıkışlı motorlar genel amaçlı motorlar olarak
adlandırılmaktadır. Her motor üreticisinin kendine özgü yapısal tasarımlara
sahip motorları bulunmaktadır. Bu motorların güçleri genel olarak kurs hacmine
bağlı olarak değişmektedir. Ancak motor katalogları incelendiğinde kurs oranı,
maksimum güçteki hızı ve sıkıştırma oranı gibi karakteristik özellikleri
birbirinden farklıdır. Bu çalışmada kurs hacmi, sıkıştırma oranı ve kurs oranı
birbirinden farklı olan benzinli genel amaçlı motorların maksimum güçteki
performansları, sürtünme, tersinmezlik, egzoz ve ısı kayıpları da dikkate
alınarak karşılaştırılabildiği basit bir termodinamik model sunulmuştur. Sayısal
çalışma için 5 farklı üreticiye ait 10
adet genel amaçlı motorun fiziksel özellikleri referans alınarak maksimum güç
ürettikleri şartlarda termodinamik modellemeleri yapılarak performansları
karşılaştırılmıştır. Motorlara ait kataloglardaki güç değerleri ile
termodinamik modele göre hesaplanan güç değerleri birbirine oldukça yakın
çıkmıştır ve bu termodinamik modelin kullanılabilir olduğunu göstermektedir.
Oluşturulan termodinamik modele göre motorların maksimum çevrim sıcaklıkları,
özgül yakıt tüketimleri ve güç yoğulukları karşılaştırılmıştır. Ayrıca her
motora ait ısı balansı oluşturulmuştur. Marka, model ve kurs hacmi ve efektif
gücünden bağımsız olarak motor parametreleri kurs oranı ve özgül yakıt
tüketimine
bağlı olarak
incelenmiştir. Yapılan inceleme neticesinde özgül yakıt tüketimi ve kurs
oranının artmasıyla birlikte maksimum çevrim sıcaklığı, güç yoğunluğu ve
mekanik verimde azalma meydana gelmektedir. Bununla birlikte kurs oranının
artması özgül yakıt tüketimini de artırmaktadır. Elde edilen sonuçlara göre
motorların karşılaştırılması için yalnızca kurs hacmi ve motor gücü gibi basit
özelliklerin yanında kurs oranı, sıkıştırma oranı gibi özelliklerin de
karşılaştırma için önemli ve etkili parametreler olduğu görülmüştür. Bu çalışma
neticesinde, sunulan termodinamik modelin farklı fiziksel özelliklere sahip
benzinli genel amaçlı motorların karşılaştırılabilmesi için kullanılabileceği
görülmüştür. 

References

  • Ansermet, J. P., & Brechet, S. D. (2019). Principles of Thermodynamics. Cambridge University Press.
  • Arabaci, E. (2018a). Artık gaz kesri ve kurs oranının tersinmez Otto çevriminin performansına ve entropi üretimine etkileri. Avrupa Bilim ve Teknoloji Dergisi, (14), 83-89.
  • Arabaci, E. (2018b). A new approach to the determination of heat balance in general purpose gasoline engines. International Conference on Technology and Science. Retrieved January 01, 2019, from http://dergipark.gov.tr/sjmakeu/page/5766
  • Chase Jr, M. W. (1998). NIST-JANAF thermochemical tables. J. Phys. Chem. Ref. Data, Monograph, 9.
  • Diesel, R. (1898). U.S. Patent No. US608845A. Washington, DC: U.S. Patent and Trademark Office.
  • Dobrucali, E. (2016). The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine. Energy, 103, 119-126.
  • Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, 53(5-6), 1289-1297.
  • Ebrahimi, R. (2012). Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and kurse length. Applied Mathematical Modelling, 36(9), 4073-4079.
  • Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., 124(1).
  • Ebrahimi, R. (2016). Second law analysis on an air-standard Miller engine. exergy, 2, 17.
  • Ebrahimi, R., & Dehkordi, N. S. (2018). Effects of design and operating parameters on entropy generation of a dual cycle. Journal of Thermal Analysis and Calorimetry, 133(3), 1609-1616.
  • Ebrahimi, R., & Sherafati, M. (2013). Thermodynamic simulation of performance of a dual cycle with kurse length and volumetric efficiency. Journal of thermal analysis and calorimetry, 111(1), 951-957.
  • Ganesan, V. (2012). Internal combustion engines. New York: McGraw-Hill.
  • Ge, Y. L., Chen, L., & Sun, F. R. (2008). Finite-time thermodynamic modelling and analysis of an irreversible diesel cycle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(5), 887-894.
  • Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, 122, 403-409.
  • Ge, Y., Chen, L., & Sun, F. (2009). Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Mathematical and Computer Modelling, 50(1-2), 101-108.
  • Ge, Y., Chen, L., Qin, X., & Xie, Z. (2017). Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid. The European Physical Journal Plus, 132(5), 209.
  • Ge, Y., Chen, L., Sun, F., & Wu, C. (2005). Effects of heat transfer and friction on the performance of an irreversible air-standard Miller cycle. International Communications in Heat and Mass Transfer, 32(8), 1045-1056.
  • Gonca, G. (2017). Performance Analysis of an Atkinson Cycle Engine under Effective Power and Effective Power Density Conditions. Acta Physica Polonica, A., 132(4).
  • Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782.
  • Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782.
  • Gonca, G., Sahin, B., & Ust, Y. (2013). Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 54, 285-290.
  • Heywood, J. B. (2018). Internal combustion engines. New York: McGraw-Hill.
  • Hohenberg, G. F. (1979). Advanced approaches for heat transfer calculations (No. 790825). SAE Technical paper.
  • Kaushik, S. C., Tyagi, S. K., & Kumar, P. (2017). Finite time thermodynamics of power and refrigeration cycles. Springer International Publishing.
  • Otto, N. A. (1887). U.S. Patent No. US365701A. Washington, DC: U.S. Patent and Trademark Office.
  • Özdemir, A. O., Kılıç, B., Arabacı, E., & Orman, R. Ç. (2018). Effect of mean piston speed and residual gas fraction on performance of a four-kurse irreversible Otto cycle engine. Scientific Journal of Mehmet Akif Ersoy University, 1(1), 6-12.
  • Wu, C. (2002). Intelligent computer based engineering thermodynamics and cycle analysis. New York: Nova Science.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2017). Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. The European Physical Journal Plus, 132(5), 203.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, 124, 46-57.
  • You, J., Chen, L., Wu, Z., & Sun, F. (2018). Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Science China Technological Sciences, 61(3), 453-463.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emre Arabacı 0000-0002-6219-7246

Publication Date March 31, 2019
Published in Issue Year 2019

Cite

APA Arabacı, E. (2019). Benzinli genel amaçlı motorların maksimum güçteki performanslarının karşılaştırılması için basit bir yaklaşım. Avrupa Bilim Ve Teknoloji Dergisi(15), 269-279. https://doi.org/10.31590/ejosat.513253