Research Article
BibTex RIS Cite

Thermodynamic Evaluation of Orange Production Process; a New Approach

Year 2019, , 96 - 102, 31.03.2019
https://doi.org/10.31590/ejosat.521449

Abstract

Nowadays, studies on sustainable agricultural practices are increasing in order not to pollute the environment and not to consume natural resources. In recent years studies on cumulative exergy consumption developed for sustainable agricultural practices have increased. The cumulative exergy consumption approach is an important method in determining of saving potential of inputs used in crop production processes and thereby improving the production processes of crops. The aim of this study is to evaluate the orange production process with cumulative exergy consumption approach. Cumulative energy consumption, cumulative exergy consumption and cumulative CO2 emission values were calculated and evaluated. The results on the cumulative energy, exergy consumption and cumulative CO2 emissions due to the use of pesticide application during the orange production process were found to be very high. As a result it should be noted that in the process of orange production, it is important for farmers to make optimum use when using pesticides.

References

  • Balkan, F., Çolak, N., Hepbaslı, A., 2005. Performance Evaluation of A Triple Effect Evaporator with Forward Feed Using Exergy Analysis. International Journey Energy Resouces, 29: 455-470.
  • Bardi, U., Asmar, T., Lavacchi, A., 2013. Turning Electricity into Food: The Role of Renewable Energy in the Future of Agriculture, Journal of Cleaner Production, 53: 224-231.
  • Berthiaume, R., Bouchard, C., 1999. Exergy Analysis of the Environmental Impact of Paving Material Manufacture. Trans CSME, 23(1B): 187-196.
  • Berthiaume, R., Bouchard, C., Rosen, M.A., 2001. Exergetic Evaluation of the Renewability of a Biofuel. Exergy An International Journal, 4: 256-268.
  • Çengel, Y.A., Boles, M.A., 2006. In: Thermodynamics an engineering approach. fifth ed.
  • Dincer, I., Hussain, M.M., AL-Zaharnah, I., 2004. Energy and Exergy Use in Public and Private Sector of Saudi Arabia. Energy Policy, 32: 1615-24.
  • Eryılmaz, G.A., Kılıç, O., 2018. Türkiye’de Sürdürülebilir Tarım ve İyi Tarım Uygulamaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(4): 624-631.
  • Helsel, Z.R., 1992. Energy and alternatives for fertilizer and pesticide use. In: Fluck RC, editor. 6. Energy in farm production. New York: Elsevier, 177-201.
  • Hoang, D.S., Prasada, R., 2010. Measuring and Decomposing Sustainable Efficiency in Agricultural Production: A Cumulative Exergy Balance Approach. Ecological Economics, 69: 1765-1776.
  • Kongshaug, G., 1998. Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production. Paper presented at IFA Technical Conference, Marrakech. Morocco September-1 October, 28.
  • Mohammadshirazi, A., Akram, A., Rafiee, S., Kalhor, E.B., 2015. On the Study of Energy and Cost Analyses of Orange Production in Mazandaran Province. Sustainable Energy Technologies and Assessments, 10: 22-28.
  • Ozilgen, M., Sorgüven, E.O., 2016. Biothermodynamics. CRC Press.
  • Ozilgen, M., Sorgüven, E., 2011. Energy and Exergy Utilization, and Carbon Dioxide Emission in Vegetable Oil Production. Energy, 36: 5954-5967.
  • Öztürk, H.H., Yaşar, B., Eren, Ö., 2010. Tarımda Enerji Kullanımı ve Yenilenebilir Enerji Kullanımı, [http://www.zmo.org.tr/resimler/ekler/ce30eeb956b8bbd_ek.pdf]. Erişim tarihi: 20.10.2018
  • Pimentel, D., 1991. Ethanol Fuels: Energy, Security, Economics, and The Environment. Journal Agriculture Environment Ethics, 4: 1-13.
  • Szargut, J., 2005. Exergy Method: Technical and Ecological Applications. WIT Press, Southampton, Boston
  • Taki, M., Yildizhan, H., 2018. Evaluation The Sustainable Energy Applications for Fruit and Vegetable Productions Processes; Case study: Greenhouse Cucumber Production. Journal of Cleaner Production, 199: 164-172.
  • Taşkın, O., Vardar, A., 2016. Tarımsal Üretimde Bazı Yenilenebilir Enerji Kaynakları Kullanımı. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(1): 179-184.
  • Wall, G., 2003. Exergy Tools. Proc Inst Mech Eng, 125-136.
  • Wittmus, H., Olson, L., Lane, D., 1975. Energy Requirements for Conventional Versus Minimum Tillage. Journal Soil Water Conservation, 3: 72-75.
  • Yildizhan, H., 2018. Energy, Exergy Utilization and CO2 Emission of Strawberry Production in Greenhouse and Open Field. Energy, 143: 417-423.
  • Yildizhan, H., Taki, M., 2018. Assessment of Tomato Production Process by Cumulative Exergy Consumption Approach in Greenhouse and Open Field Conditions: Case Study of Turkey. Energy, 156: 401-408.
  • Yildizhan, H., 2017. Thermodynamics Analysis For A New Approach to Agricultural Practices: Case of Potato Production. Journal of Cleaner Production, 166: 660-667.

Portakal Üretim Sürecinin Termodinamik Değerlendirilmesi; Yeni Bir Yaklaşım

Year 2019, , 96 - 102, 31.03.2019
https://doi.org/10.31590/ejosat.521449

Abstract

Günümüzde çevrenin kirletilmemesi ve doğal kaynakların tüketilmemesi için sürdürebilir tarım uygulamalarıyla ilgili çalışmalar artmaktadır. Son yıllarda sürdürülebilir tarım uygulamaları için geliştirilen kümülatif ekserji tüketimi ile ilgili analiz çalışmaları artmıştır. Kümülatif ekserji tüketimi yaklaşımı, mahsul üretim süreçlerinde kullanılan girdilerin tasarruf potansiyelini tespit etmek ve böylece mahsullerin üretim süreçlerini iyileştirmede önemli bir metottur. Bu çalışmanın amacı portakal üretim sürecini, kümülatif ekserji tüketimi yaklaşımıyla değerlendirmektir. Bu çalışma ile portakal üretim süreci için kümülatif enerji tüketimi, kümülatif ekserji tüketimi ve kümülatif CO2 emisyon değerleri hesaplanmış ve değerlendirilmiştir. Portakal üretim sürecinde tarım ilacının kullanımından dolayı gerçekleşen kümülatif enerji ve ekserji tüketimleri ile kümülatif CO2 emisyonu çok fazladır. Sonuç olarak belirtilmelidir ki portakal üretim sürecinde çiftçilerin tarım ilacı kullanırken optimum düzeyde uygulama yapmaları önemlidir.

References

  • Balkan, F., Çolak, N., Hepbaslı, A., 2005. Performance Evaluation of A Triple Effect Evaporator with Forward Feed Using Exergy Analysis. International Journey Energy Resouces, 29: 455-470.
  • Bardi, U., Asmar, T., Lavacchi, A., 2013. Turning Electricity into Food: The Role of Renewable Energy in the Future of Agriculture, Journal of Cleaner Production, 53: 224-231.
  • Berthiaume, R., Bouchard, C., 1999. Exergy Analysis of the Environmental Impact of Paving Material Manufacture. Trans CSME, 23(1B): 187-196.
  • Berthiaume, R., Bouchard, C., Rosen, M.A., 2001. Exergetic Evaluation of the Renewability of a Biofuel. Exergy An International Journal, 4: 256-268.
  • Çengel, Y.A., Boles, M.A., 2006. In: Thermodynamics an engineering approach. fifth ed.
  • Dincer, I., Hussain, M.M., AL-Zaharnah, I., 2004. Energy and Exergy Use in Public and Private Sector of Saudi Arabia. Energy Policy, 32: 1615-24.
  • Eryılmaz, G.A., Kılıç, O., 2018. Türkiye’de Sürdürülebilir Tarım ve İyi Tarım Uygulamaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(4): 624-631.
  • Helsel, Z.R., 1992. Energy and alternatives for fertilizer and pesticide use. In: Fluck RC, editor. 6. Energy in farm production. New York: Elsevier, 177-201.
  • Hoang, D.S., Prasada, R., 2010. Measuring and Decomposing Sustainable Efficiency in Agricultural Production: A Cumulative Exergy Balance Approach. Ecological Economics, 69: 1765-1776.
  • Kongshaug, G., 1998. Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production. Paper presented at IFA Technical Conference, Marrakech. Morocco September-1 October, 28.
  • Mohammadshirazi, A., Akram, A., Rafiee, S., Kalhor, E.B., 2015. On the Study of Energy and Cost Analyses of Orange Production in Mazandaran Province. Sustainable Energy Technologies and Assessments, 10: 22-28.
  • Ozilgen, M., Sorgüven, E.O., 2016. Biothermodynamics. CRC Press.
  • Ozilgen, M., Sorgüven, E., 2011. Energy and Exergy Utilization, and Carbon Dioxide Emission in Vegetable Oil Production. Energy, 36: 5954-5967.
  • Öztürk, H.H., Yaşar, B., Eren, Ö., 2010. Tarımda Enerji Kullanımı ve Yenilenebilir Enerji Kullanımı, [http://www.zmo.org.tr/resimler/ekler/ce30eeb956b8bbd_ek.pdf]. Erişim tarihi: 20.10.2018
  • Pimentel, D., 1991. Ethanol Fuels: Energy, Security, Economics, and The Environment. Journal Agriculture Environment Ethics, 4: 1-13.
  • Szargut, J., 2005. Exergy Method: Technical and Ecological Applications. WIT Press, Southampton, Boston
  • Taki, M., Yildizhan, H., 2018. Evaluation The Sustainable Energy Applications for Fruit and Vegetable Productions Processes; Case study: Greenhouse Cucumber Production. Journal of Cleaner Production, 199: 164-172.
  • Taşkın, O., Vardar, A., 2016. Tarımsal Üretimde Bazı Yenilenebilir Enerji Kaynakları Kullanımı. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(1): 179-184.
  • Wall, G., 2003. Exergy Tools. Proc Inst Mech Eng, 125-136.
  • Wittmus, H., Olson, L., Lane, D., 1975. Energy Requirements for Conventional Versus Minimum Tillage. Journal Soil Water Conservation, 3: 72-75.
  • Yildizhan, H., 2018. Energy, Exergy Utilization and CO2 Emission of Strawberry Production in Greenhouse and Open Field. Energy, 143: 417-423.
  • Yildizhan, H., Taki, M., 2018. Assessment of Tomato Production Process by Cumulative Exergy Consumption Approach in Greenhouse and Open Field Conditions: Case Study of Turkey. Energy, 156: 401-408.
  • Yildizhan, H., 2017. Thermodynamics Analysis For A New Approach to Agricultural Practices: Case of Potato Production. Journal of Cleaner Production, 166: 660-667.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hasan Yıldızhan 0000-0003-0272-980X

Publication Date March 31, 2019
Published in Issue Year 2019

Cite

APA Yıldızhan, H. (2019). Portakal Üretim Sürecinin Termodinamik Değerlendirilmesi; Yeni Bir Yaklaşım. Avrupa Bilim Ve Teknoloji Dergisi(15), 96-102. https://doi.org/10.31590/ejosat.521449

Cited By