Research Article
BibTex RIS Cite

Biyodizeldeki Suyun Reçine ile Uzaklaştırılması: Adsorpsiyon İzotermi, Kinetiği ve Termodinamik İncelemesi

Year 2019, , 561 - 570, 31.03.2019
https://doi.org/10.31590/ejosat.535977

Abstract

Fosil kökenli yakıtların kullanımına ilişkin ciddi çevresel kaygılar, her
geçen gün alternatif temiz yakıtlara olan ilgiyi artırmaktadır. Biyodizel,
uygun bir katalizör eşliğinde, bir alkolle trigliseritlerin
transesterifikasyonu yoluyla üretilen, temiz, biyolojik olarak bozulabilen,
toksik olmayan ve yenilenebilir bir yakıttır. Biyodizel üretimi sırasında, yan
ürün olarak oluşan gliserin ayrıldıktan sonra, ham biyodizelin belli
uluslararası yakıt standartlarını
(EN
14214 ya da ASTM D6751)
karşılaması için saflaştırılması gerekir. Biyodizelde
safsızlıkların varlığı, sadece motor performansını önemli ölçüde etkilemekle
kalmaz, aynı zamanda onun kullanımı ve depolanmasını da zorlaştırır. Bu nedenle
ham biyodizelin saflaştırılması bir zorunluluk olarak karşımıza çıkar. Ham
biyodizeli saflaştırmak için, hem ıslak hem de kuru yıkama yapılabilmesine
rağmen, genellikle kullanılan yöntem ıslak yıkama (su ile yıkama) yöntemidir.
Ancak bu yöntemde kullanılan suyun, biyodizelden çok iyi uzaklaştırılması
gerekir. Biyodizel üretimi için yağların geleneksel transesterifikasyonunda, su
her zaman olumsuz etkiler yaratır. Biyodizeldeki suyun varlığı, sabun oluşumuna
neden olur, katalizörü tüketir, katalizörün etkinliğini azaltır ve bunların
tümü düşük dönüşüme neden olur. Ayrıca üretilen yakıtın kalitesini de olumsuz
etkiler.



Bu çalışmada, biyodizeldeki suyun, katyonik Dowex
HCR-S iyon değiştirici reçine ile adsorpsiyon mekanizması çalışılmış ve prosesin adsorpsiyon dengesi,
adsorpsiyon kinetiği ve adsorpsiyon termodinamiği incelenmiştir. Bu kapsamda
Langmuir, Freundlich, Temkin ve Dubinin-Radushkevich izotermleri denenmiş ve
deneysel verilere en uygun izotermin, R2 değeri 0.997 olan Langmuir
izotermi olduğu bulunmuştur. Ayrıca, maksimum adsorpsiyon kapasitesi, 53.48 mg
g-1 olarak tespit edilmiştir. Kinetik verilerin analizleri, yalancı
birinci mertebe ve yalancı ikinci mertebe kinetik modelleri kullanılarak
yapılmıştır. Elde edilen sonuçlar, adsorplama prosesinin, yalancı ikinci
mertebe kinetik modele en iyi uyduğunu göstermiştir. Çalışmada, ayrıca
adsorpsiyon termodinamiği de incelenmiştir. Buna göre, adsorpsiyon prosesinin
kendiliğinden gerçekleştiği (∆Go < 0) ve ekzotermik olduğu (∆Ho
< 0) belirlenmiş ve Dowex HCR-S katyonik
reçinenin
biyodizelden su adsorpsiyonu için, uygun bir adsorbent olduğuna karar
verilmiştir. 

References

  • Alves, M.J., Cavalcanti, I.V., Resende, M.M., Cardoso, V.L., Reis, M.H. (2016). Biodiesel dry purification with sugarcane bagasse, Industrial Crops and Products, 89, 119-127.
  • Andrei, M. (2016). Aspects Related to the Purification of Biodiesel Synthesized in Alkaline Catalysis, Revista De Chime, 67(4), 791-795.
  • Atadashi, I.M. (2015). Purification of crude biodiesel using dry washing and membrane technologies. Alexandria Engineering Journal, 54 (4), 1265-1272.
  • Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R., Sulaiman, N.M.N. (2012). The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 16, 3456–3470.
  • Berrios, M., Martin, M.A., Chica A.F., Martin, A. (2011). Purification of biodiesel from used cooking oils. Applied Energy, 88, 3625–3631.
  • Çelik-Okumuş, Z., Doğan, T.H., Temur, H. (2019). Removal of water by using cationic resin during biodiesel purification. Renewable Energy, X.
  • Dubinin, M., Radushkevich, L. (1947). Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt, 1, 875.
  • Elmorsi, T.M., Mohamed, Z.H., Shopak, W., Ismaiel, A.M. (2014). Kinetic and Equilibrium Isotherms Studies of Adsorption of Pb(II) from Water onto Natural Adsorbent. Journal of Environmental Protection, 5, 1667-1681.
  • Faccini, C.S., da Cunha, M.E., Aranda Moraes, M.S., Krause, L.C., Manique, M.C., Rodrigues, M.R.A., Benvenutti, E.V., Caramao, E.B. (2011). Dry washing in biodiesel purification: a comparative study of adsorbents. Journal of the Brazilian Chemical Society, 22, 558–563.
  • Gündüz, F., Bayrak, B. (2017). Biosorption of malachite green from an aqueous solution using pomegranate peel: Equilibrium modelling, kinetic and thermodynamic studies. Journal of Molecular Liquids, 243, 790-798.
  • Hayyan, M., Mjalli, F.S, Hashim, M.A., Alnashef, I.M. (2010). A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Processing Technology, 91, 116–120.
  • Kanca, A., Temur, H. (2016). The effects of long-term storage on the cold flow properties and viscosity of canola-based biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(15), 2205-2210.
  • Kusdiana, D., Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91 (3), 289-295.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 40, 1361–1403.
  • Li, R., Liang, N., Ma, X., Chen, B., Huang, F. (2019). Study on the adsorption behavior of glycerin from fatty acid methyl esters by a tertiary amine-type anion exchange resin. Journal of Chromatography A, 1586, 62-71.
  • Ma, F., Hanna, M. A. (1999). Biodiesel production: A review. Bioresour Technology, 70, 1-15.
  • Özgül-Yücel, S., Türkay, S. (2003). Purification of FAME by rice hull ash adsorption. Journal of the American Oil Chemists’s Society, 80, 373-376.
  • Rudzinski, W., Plazinski, W. (2006). Kinetics of Solute Adsorption at Solid/Solution Interfaces: A Theoretical Development of the Empirical Pseudo-First and Pseudo-Second Order Kinetic Rate Equations, Based on Applying the Statistical Rate Theory of Interfacial Transport. The Journal of Physical Chemistry B, 110, 16514-16525. Shadid, E.M., Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15, 4732-4745.
  • Shibasaki-Kitakawa, N., Kanagawa, K., Nakashima, K., Yonemoto, T. (2013). Simultaneous production of high quality biodiesel and glycerin from Jatrophaoil using ion-exchange resins as catalysts and adsorbent. Bioresource Technology, 142, 732–736.
  • Temkin, M., Pyzhev, V. (1940). Recent Modifications to Langmuir isotherms. Acta Physico-Chimica Sinica, 12, 217–222.
  • Veljkovic, V.B., Bankovic-llic, I.B., Stamenkovic, O.S. (2015). Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 49, 500-516.
  • Wall, J., Van Gerpen, J., Thompson, J. (2011). Soap and glycerin removal from biodiesel using waterless processes. Transactions of the Asabe, 54, 535-541.

Removal of Water from Biodiesel with Resin: Isothermal, Kinetic and Thermodynamic Investigation of Adsorption

Year 2019, , 561 - 570, 31.03.2019
https://doi.org/10.31590/ejosat.535977

Abstract

The serious environmental concerns about the use of fossil-sourced fuels has increased the interest in alternative clean fuels with each passing day. Biodiesel is a clean, biodegradable, non-toxic and renewable fuel produced by transesterification of triglycerides with an alcohol in the presence of a suitable catalyst. During production of biodiesel, after by-product glycerin is removed, raw biodiesel must be purified to reach certain international fuel standards (EN 14214 or ASTM D6751). The presence of impurities in biodiesel does not only significantly affect motor performance, but simultaneously makes use and storage difficult. As a result, purification of raw biodiesel is a necessity. To purify raw biodiesel, in spite of the use of both wet and dry washing, generally the wet washing method (with water) is used. However, the water used in this method must be removed very thoroughly from the biodiesel. Water always causes negative effects on traditional transesterification of oils in production of biodiesel. The presence of water in biodiesel causes the formation of soap, consumes the catalyst, reduces the efficiency of the catalyst and this all leads to low transformation. Additionally, it negatively affects the quality of the fuel.
In this study, the adsorption mechanism of the water in the biodiesel with the cationic Dowex HCR-S ion exchange resin was studied and the adsorption equilibrium, adsorption kinetics and adsorption thermodynamics were investigated for the process. Within this scope, the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used and the most appropriate isotherm for experimental data was found to be the Langmuir isotherm with R2 value 0.997. Additionally, maximum adsorption capacity was identified as 53.48 mg g-1. Kinetic data were analyzed using pseudo-first order and pseudo second-order kinetic models. The results obtained show the adsorption process fitted the pseudo-second order kinetic model best. The study also investigated the adsorption thermodynamics. Accordingly, the adsorption process was determined to occur spontaneously (∆Go < 0) and be exothermal (∆Ho < 0). It was concluded that Dowex HCR-S cationic resin was an appropriate adsorbent for adsorption of water from biodiesel.  

References

  • Alves, M.J., Cavalcanti, I.V., Resende, M.M., Cardoso, V.L., Reis, M.H. (2016). Biodiesel dry purification with sugarcane bagasse, Industrial Crops and Products, 89, 119-127.
  • Andrei, M. (2016). Aspects Related to the Purification of Biodiesel Synthesized in Alkaline Catalysis, Revista De Chime, 67(4), 791-795.
  • Atadashi, I.M. (2015). Purification of crude biodiesel using dry washing and membrane technologies. Alexandria Engineering Journal, 54 (4), 1265-1272.
  • Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R., Sulaiman, N.M.N. (2012). The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 16, 3456–3470.
  • Berrios, M., Martin, M.A., Chica A.F., Martin, A. (2011). Purification of biodiesel from used cooking oils. Applied Energy, 88, 3625–3631.
  • Çelik-Okumuş, Z., Doğan, T.H., Temur, H. (2019). Removal of water by using cationic resin during biodiesel purification. Renewable Energy, X.
  • Dubinin, M., Radushkevich, L. (1947). Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt, 1, 875.
  • Elmorsi, T.M., Mohamed, Z.H., Shopak, W., Ismaiel, A.M. (2014). Kinetic and Equilibrium Isotherms Studies of Adsorption of Pb(II) from Water onto Natural Adsorbent. Journal of Environmental Protection, 5, 1667-1681.
  • Faccini, C.S., da Cunha, M.E., Aranda Moraes, M.S., Krause, L.C., Manique, M.C., Rodrigues, M.R.A., Benvenutti, E.V., Caramao, E.B. (2011). Dry washing in biodiesel purification: a comparative study of adsorbents. Journal of the Brazilian Chemical Society, 22, 558–563.
  • Gündüz, F., Bayrak, B. (2017). Biosorption of malachite green from an aqueous solution using pomegranate peel: Equilibrium modelling, kinetic and thermodynamic studies. Journal of Molecular Liquids, 243, 790-798.
  • Hayyan, M., Mjalli, F.S, Hashim, M.A., Alnashef, I.M. (2010). A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Processing Technology, 91, 116–120.
  • Kanca, A., Temur, H. (2016). The effects of long-term storage on the cold flow properties and viscosity of canola-based biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(15), 2205-2210.
  • Kusdiana, D., Saka, S. (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91 (3), 289-295.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 40, 1361–1403.
  • Li, R., Liang, N., Ma, X., Chen, B., Huang, F. (2019). Study on the adsorption behavior of glycerin from fatty acid methyl esters by a tertiary amine-type anion exchange resin. Journal of Chromatography A, 1586, 62-71.
  • Ma, F., Hanna, M. A. (1999). Biodiesel production: A review. Bioresour Technology, 70, 1-15.
  • Özgül-Yücel, S., Türkay, S. (2003). Purification of FAME by rice hull ash adsorption. Journal of the American Oil Chemists’s Society, 80, 373-376.
  • Rudzinski, W., Plazinski, W. (2006). Kinetics of Solute Adsorption at Solid/Solution Interfaces: A Theoretical Development of the Empirical Pseudo-First and Pseudo-Second Order Kinetic Rate Equations, Based on Applying the Statistical Rate Theory of Interfacial Transport. The Journal of Physical Chemistry B, 110, 16514-16525. Shadid, E.M., Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15, 4732-4745.
  • Shibasaki-Kitakawa, N., Kanagawa, K., Nakashima, K., Yonemoto, T. (2013). Simultaneous production of high quality biodiesel and glycerin from Jatrophaoil using ion-exchange resins as catalysts and adsorbent. Bioresource Technology, 142, 732–736.
  • Temkin, M., Pyzhev, V. (1940). Recent Modifications to Langmuir isotherms. Acta Physico-Chimica Sinica, 12, 217–222.
  • Veljkovic, V.B., Bankovic-llic, I.B., Stamenkovic, O.S. (2015). Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 49, 500-516.
  • Wall, J., Van Gerpen, J., Thompson, J. (2011). Soap and glycerin removal from biodiesel using waterless processes. Transactions of the Asabe, 54, 535-541.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zeynep Çelik Okumuş This is me 0000-0002-4463-3104

Tuba Hatice Doğan 0000-0001-8369-9416

Publication Date March 31, 2019
Published in Issue Year 2019

Cite

APA Çelik Okumuş, Z., & Doğan, T. H. (2019). Biyodizeldeki Suyun Reçine ile Uzaklaştırılması: Adsorpsiyon İzotermi, Kinetiği ve Termodinamik İncelemesi. Avrupa Bilim Ve Teknoloji Dergisi(15), 561-570. https://doi.org/10.31590/ejosat.535977