Research Article
BibTex RIS Cite

Double Quadrature Spatial Intensity Modulation for Visible Light Communications

Year 2019, , 905 - 914, 31.08.2019
https://doi.org/10.31590/ejosat.582283

Abstract

In
this paper, a new spectrally efficient space modulation technique, which is
called double quadrature spatial intensity modulation (DQSIM), is proposed for
multiple-input multiple-output (MIMO) visible light communication (VLC)
systems. Sub-carrier intensity modulation (SIM), which ensures the use of in-phase/quadrature
(I/Q) signals in intensity modulation direct detection (IM/DD) systems, is used
as a digital modulation scheme. In RF, quadrature spatial modulation (QSM)
transmits the I/Q signals through single or multiple antennas selected independently
from each other. Furthermore, the orthogonality between I and Q components is provided
for the half period of sinusoids. DQSIM utilizes these two features and
transmits four fold more bits than spatial modulation (SM) via spatial
constellation. SIM uses two-fold bandwidth compared to on-off keying (OOK),
while DQSIM uses three fold.
DQSIM
outperforms benchmark modulation schemes, which are SIM-SM and PAM-SM, at the
BER value of 10-4. Furthermore, DQSIM performance has increased with
increasing number of LEDs.

References

  • Khan, L.U. 2017. Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, 3, 2, pp. 78-88. https://doi.org/10.1016/j.dcan.2016.07.004
  • Jovicic, A. Li, J. and Richardson, T. 2013. Visible light communication: Opportunities, challenges and the path to market IEEE Commun. Mag. 51, 12, pp. 26-32. https://doi.org/10.1109/MCOM.2013.6685754
  • Dimitrov, S. and Haas, H. 2015. Principles of LED Light Communications, Cambridge University Press, Cambridge, UK.
  • Armstrong, J. 2009. OFDM for Optical Communications, IEEE Journal of Lightwave Tech., 27, 3, pp. 189-204. https://doi.org/10.1109/JLT.2008.2010061
  • Barry, J. R. 1994. Wireless Infrared Communications, Norwell, MA Kluwer.
  • Islim, M. S. and Haas, H. 2016. Modulation Techniques for Li-Fi, ZTE Communications, 14, 2, pp. 29-40. https://www.research.ed.ac.uk/portal/en/publications/modulation-techniques-for-lifi
  • Celik, Y. and Akan, A. 2018. Subcarrier intensity modulation for MIMO visible light communications, Optics Communications, 412, pp. 90-101. https://doi.org/10.1016/j.optcom.2017.12.002
  • Zeng, L. and et al. 2009. High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting, IEEE Journal on Selected Areas in Comm., 27, 9, pp. 1654-1662. https://doi.org/10.1109/ JSAC.2009.091215
  • Mesleh, R. and et al. 2011. Optical Spatial Modulation, IEEE/OSA Journal of Optical Communications and Networking, 3, 3, pp. 234-244. https://doi.org/10.1364/ JOCN.3.000234
  • Fath, T. and Haas, H. 2013. Performance comparison of MIMO techniques for optical wireless communications in indoor environments, IEEE Transactions on Communications, 61, 2, pp. 733–742. https://doi.org/10.1109/ TCOMM.2012.120512.110578
  • Mesleh, R. and et. al. 2008. Spatial modulation, IEEE Trans. Veh. Technol., 57, 4, pp. 2228-2241. https://doi.org/10.1109/TVT.2007.912136
  • Mesleh, R., Ikki, S., and Aggoune H. 2015. Quadrature spatial modulation, IEEE Trans. Veh. Technol., 64, 6, pp. 2738-2742. https://doi.org/10.1109/TVT.2014.2344036
  • Mesleh, R. and Alhassi, A. 2018. Space Modulation Techniques, Wiley, 1th Ed., Hoboken, USA.
  • Nuwanpriya, A. and et al. 2015. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users, IEEE Journal on Selected Areas in Communications, 33, 9, pp. 1780-1792.
  • You, R. and Kahn, J. M. 2001. Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals, IEEE Transactions on Communications, 49, 12, pp. 2164-2171. https://doi.org/10.1109/26.974263
  • Y. Qiu and et al., 2018. Visible Light Communications Based on CDMA Technology, IEEE Wireless Communications, 25, 2, pp. 178-185.
  • A. Younis and et al., 2010. Generalized spatial modulation, Conf. Rec. Asilomar Conf. Signals, Syst., Comput., pp. 1498-1502, Pacific Grove, CA, USA.

Görünür Işık Haberleşmesi için Çift Dördün Uzaysal Yoğunluk Modülasyonu

Year 2019, , 905 - 914, 31.08.2019
https://doi.org/10.31590/ejosat.582283

Abstract

Bu çalışmada, çift dördün uzaysal modülasyon (ÇDUM) adı verilen izgesel
verimi yüksek yeni bir uzaysal modülasyon tekniği çoklu-giriş çoklu-çıkış
(ÇGÇÇ) görünür ışık haberleşmesi (GIH) sistemleri için önerilmiştir. Sayısal
modülasyon planı olarak, eş evreli (I) ve dördün (Q) sinyallerin yoğunluk
modülasyonlu direk sezim (YM/DD) sistemlerde kullanımına olanak sağlayan,
alt-taşıyıcılı yoğunluk modülasyonu (AYM) kullanılmıştır. Radyo frekans (RF)
haberleşmesinde dördün uzamsal modülasyon (DUM) I/Q sinyallerini her biri
diğerinden bağımsız olarak seçilmiş antenlerden iletir. Dahası I/Q sinyalleri
arasındaki diklik sinüzoidal sinyallerin yarım periyodunda da korunmaktadır.
ÇDUM bu iki özelliği kullanarak uzamsal modülasyonun (UM) dört katı biti uzaysal
boyutta iletir. AYM, aç-kapa anahtarlamaya (AKA) kıyasla iki kat bant genişliği
kullanırken, ÇDUM üç kat kullanır. Bu çalışmada ÇDUM performansı AYM-UM ve darbe
genlik modülasyonlu uzaysal modülasyon (DGM-UM) ile karşılaştırılmış ve daha
iyi bir performans sergilediği gösterilmiştir. Ek olarak, verici taraftaki LED
sayısı arttıkça ÇDUM performansı artmaktadır.

References

  • Khan, L.U. 2017. Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, 3, 2, pp. 78-88. https://doi.org/10.1016/j.dcan.2016.07.004
  • Jovicic, A. Li, J. and Richardson, T. 2013. Visible light communication: Opportunities, challenges and the path to market IEEE Commun. Mag. 51, 12, pp. 26-32. https://doi.org/10.1109/MCOM.2013.6685754
  • Dimitrov, S. and Haas, H. 2015. Principles of LED Light Communications, Cambridge University Press, Cambridge, UK.
  • Armstrong, J. 2009. OFDM for Optical Communications, IEEE Journal of Lightwave Tech., 27, 3, pp. 189-204. https://doi.org/10.1109/JLT.2008.2010061
  • Barry, J. R. 1994. Wireless Infrared Communications, Norwell, MA Kluwer.
  • Islim, M. S. and Haas, H. 2016. Modulation Techniques for Li-Fi, ZTE Communications, 14, 2, pp. 29-40. https://www.research.ed.ac.uk/portal/en/publications/modulation-techniques-for-lifi
  • Celik, Y. and Akan, A. 2018. Subcarrier intensity modulation for MIMO visible light communications, Optics Communications, 412, pp. 90-101. https://doi.org/10.1016/j.optcom.2017.12.002
  • Zeng, L. and et al. 2009. High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting, IEEE Journal on Selected Areas in Comm., 27, 9, pp. 1654-1662. https://doi.org/10.1109/ JSAC.2009.091215
  • Mesleh, R. and et al. 2011. Optical Spatial Modulation, IEEE/OSA Journal of Optical Communications and Networking, 3, 3, pp. 234-244. https://doi.org/10.1364/ JOCN.3.000234
  • Fath, T. and Haas, H. 2013. Performance comparison of MIMO techniques for optical wireless communications in indoor environments, IEEE Transactions on Communications, 61, 2, pp. 733–742. https://doi.org/10.1109/ TCOMM.2012.120512.110578
  • Mesleh, R. and et. al. 2008. Spatial modulation, IEEE Trans. Veh. Technol., 57, 4, pp. 2228-2241. https://doi.org/10.1109/TVT.2007.912136
  • Mesleh, R., Ikki, S., and Aggoune H. 2015. Quadrature spatial modulation, IEEE Trans. Veh. Technol., 64, 6, pp. 2738-2742. https://doi.org/10.1109/TVT.2014.2344036
  • Mesleh, R. and Alhassi, A. 2018. Space Modulation Techniques, Wiley, 1th Ed., Hoboken, USA.
  • Nuwanpriya, A. and et al. 2015. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users, IEEE Journal on Selected Areas in Communications, 33, 9, pp. 1780-1792.
  • You, R. and Kahn, J. M. 2001. Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals, IEEE Transactions on Communications, 49, 12, pp. 2164-2171. https://doi.org/10.1109/26.974263
  • Y. Qiu and et al., 2018. Visible Light Communications Based on CDMA Technology, IEEE Wireless Communications, 25, 2, pp. 178-185.
  • A. Younis and et al., 2010. Generalized spatial modulation, Conf. Rec. Asilomar Conf. Signals, Syst., Comput., pp. 1498-1502, Pacific Grove, CA, USA.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yasin Çelik 0000-0001-8972-9970

Publication Date August 31, 2019
Published in Issue Year 2019

Cite

APA Çelik, Y. (2019). Double Quadrature Spatial Intensity Modulation for Visible Light Communications. Avrupa Bilim Ve Teknoloji Dergisi(16), 905-914. https://doi.org/10.31590/ejosat.582283