Research Article
BibTex RIS Cite

Space State Matrices Based Novel PI and Sliding Mode Controllers for Step-Up Converters in Renewable Energy Applications

Year 2019, , 841 - 854, 31.08.2019
https://doi.org/10.31590/ejosat.590831

Abstract

Photovoltaic panels generate a limited amount of power, so the transmission of this power to the grid side should be done by an efficient DC-DC converter structure and a powerful controller circuit. The controller should be designed based on accurate mathematical analysis to act with high quality and use the minimum number of components as much as possible in order to obtain a cheap and simple topology. In this study, the performance analysis of a novel proportional-integral (PI) controller and Sliding Mode Controller (SMC) methods for a DC-DC power boost converter is examined in Continuous Conduction Mode (CCM). Having a comprehensive mathematical model for the converter allows designing an accurate controller. So, in the first step, an exhaustive model for this converter based on steady space matrixes has been presented. In the next step, these two different controllers investigated based on the proposed model of the boost converter and finally, comparisons for the performance analysis of presented controllers have been done. One of the novelty aspects of the PI controller is that it will give sample currents of the inductor to make a relation between the output voltage and the controller strategy in order to generate suitable pulses to drive the power switch and SMC does not need to any sampling for this purpose and acts through tracking the output voltage.

References

  • Jiang, W., Chincholkar, S. H., and Chan, C. (2018). Investigation of a Voltage-Mode Controller for a dc-dc Multilevel Boost Converter, IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 908-912.
  • Sundareswaran, K., and Sreedevi, V. T. (2018) Boost Converter Controller Design Using Queen-Bee-Assisted GA, IEEE Transactions on Industrial Electronics, 56, 778-783.
  • Rana, N., Ghosh, A., and Banerjee, S. (2017). Development of an Improved Tristate Buck–Boost Converter With Optimized Type-3 Controller, IEEE Journal of Emerging and Selected Topics in Power Electronics, 6, 400-415.
  • Veerachary, M., and Shaw, P. Controller Design and Analysis for Fifth-Order Boost Converter, IEEE Transactions on Industry Applications, 54, 4894-4907.
  • Marcillo K. E. L. (2019). Interval Robust Controller to Minimize Oscillations Effects Caused by Constant Power Load in a DC Multi-Converter Buck-Buck System, IEEE Access, 7, 26324-26342.
  • Hwu, K. I., and Peng, T. J. (2012). A Novel Buck–Boost Converter Combining KY and Buck Converters, IEEE Transactions on Power Electronics, 27, 2236-2241.
  • Wu, H., Mu, T., Ge, H., and Xing, Y. (2016). Full-Range Soft-Switching-Isolated Buck-Boost Converters With Integrated Interleaved Boost Converter and Phase-Shifted Control," in IEEE Transactions on Power Electronics, 31, 987-999.
  • H. Liu, Y. Ji, L. Wang and P. Wheeler, "A Family of Improved Magnetically Coupled Impedance Network Boost DC–DC Converters," in IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3697-3702, May 2018. doi: 10.1109/TPEL.2017.2763153.
  • Rana, N., Kumar, M., Ghosh, A., and Banerjee, S. (2018) A Novel Interleaved Tri-State Boost Converter with Lower Ripple and Improved Dynamic Response," in IEEE Transactions on Industrial Electronics, 65, 5456-5465.
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., and Lehman, B. (2017). Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications, IEEE Transactions on Power Electronics, 32, 9143-9178.
  • Pandey, S. K., Patil, S. L., Phadke, S. B. (2018). Comment on “PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters, IEEE Transactions on Industrial Electronics, 65, 5078-5080.
  • Lee, S., Do, H. (2018). High Step-Up Coupled-Inductor Cascade Boost DC–DC Converter With Lossless Passive Snubber, IEEE Transactions on Industrial Electronics, 65, 7753-7761.
  • Kim, J., Choi, H., Won, C. (2018). New Modulated Carrier Controlled PFC Boost Converter, IEEE Transactions on Power Electronics, 33, 4772-4782.
  • Kim, I. H., and Son, Y. I. (2017). Regulation of a DC/DC Boost Converter Under Parametric Uncertainty and Input Voltage Variation Using Nested Reduced-Order PI Observers, IEEE Transactions on Industrial Electronics, 64, 552-562.
  • Genc, N., Uzmus, H., and Iskender, I. (2016). Dynamic behavior of dc-dc boost converter controlled with cascade PI-ASC, 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, 1-4.
  • Rabiaa, O., Mouna, B. H., Lassaad, S., Aymen, F., and Aicha, A. (2018). Cascade Control Loop of DC-DC Boost Converter Using PI Controller, 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 2018, pp. 1-5.
  • Mohanty, P. R. and Panda, A. K. (2017). Fixed-Frequency Sliding-Mode Control Scheme Based on Current Control Manifold for Improved Dynamic Performance of Boost PFC Converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, 5, 576-586.
  • Chincholkar, S. H., Jiang, W., and Chan, C. (2018). A Modified Hysteresis-Modulation-Based Sliding Mode Control for Improved Performance in Hybrid DC–DC Boost Converter, IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 1683-1687.
  • Mokhtar, M., Marei, M. I., and El-Sattar, A. A. (2019). An Adaptive Droop Control Scheme for DC Microgrids Integrating Sliding Mode Voltage and Current Controlled Boost Converters, IEEE Transactions on Smart Grid, 10, 1685-1693.
  • Ghaderi, D., Bayrak, G. (2019). A Novel Step-Up Power Converter Configuration for Solar Energy Application, Elektronika ir Elektronicha, 25, 50-55.

Yenilenebilir Enerji Uygulamalarında Yükseltici DA DA Dönüştürücüler için Uzay Durum Matrislerine Dayalı yeni PI ve Kayan Kipli Modu Kontrolörler

Year 2019, , 841 - 854, 31.08.2019
https://doi.org/10.31590/ejosat.590831

Abstract

Bir Fotovoltaik (PV)
panelin üretilen güç miktarının belli bir limitleri aşabilmemesi ve sınırlı
olmasını bilmekle birlikte, yenilenebilir energy kaynaklarında verimin son
derece önemli olduğu nedeniyle kontrol devresinin performansı oldukça
önemlidir. Bu enerjinin aktarımı kaliteli kontrol algoritmalarına dayanarak, kayıpları
en az değerlere düşürebilmek için farklı çalışmalarda dikkate alınmıştır. Bu
çalışmada, DA-DA Boost dönüştürücüsü için uzay durumu matrislerini
geliştirerek, yeni Orantılı İntegral (PI) ve Kayan Kipli Modu (SMC) tabanlı
Kontrolör yöntemlerinin performans analizi dönüştürücünün Sürekli İletim
Modunda (CCM) incelenmiştir. Dönüştürücü için kapsamlı bir matematiksel model
elde etmek, doğru bir kontrol sisteminin tasarlanmasına yol açmabilmektedir.
Böylece, ilk adımda, sabit uzay matrislerine dayanan matimatik modelleme
yöntemleriyle, dönüştürücünün çıkış gerilimi ve giriş akımı için kapsamlı bir
model sunulmuştur. Bir sonraki adımda, bu iki farklı kontrolör, sunulan modele
dayanarak, araştırılmış ve son olarak, sunulan kontrolörlerin performans analizi
için karşılaştırmalar yapılmıştır. Bu iki yeni modele göre, SMC metodu daha iyi
sonuçlar sunmaktadır.

References

  • Jiang, W., Chincholkar, S. H., and Chan, C. (2018). Investigation of a Voltage-Mode Controller for a dc-dc Multilevel Boost Converter, IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 908-912.
  • Sundareswaran, K., and Sreedevi, V. T. (2018) Boost Converter Controller Design Using Queen-Bee-Assisted GA, IEEE Transactions on Industrial Electronics, 56, 778-783.
  • Rana, N., Ghosh, A., and Banerjee, S. (2017). Development of an Improved Tristate Buck–Boost Converter With Optimized Type-3 Controller, IEEE Journal of Emerging and Selected Topics in Power Electronics, 6, 400-415.
  • Veerachary, M., and Shaw, P. Controller Design and Analysis for Fifth-Order Boost Converter, IEEE Transactions on Industry Applications, 54, 4894-4907.
  • Marcillo K. E. L. (2019). Interval Robust Controller to Minimize Oscillations Effects Caused by Constant Power Load in a DC Multi-Converter Buck-Buck System, IEEE Access, 7, 26324-26342.
  • Hwu, K. I., and Peng, T. J. (2012). A Novel Buck–Boost Converter Combining KY and Buck Converters, IEEE Transactions on Power Electronics, 27, 2236-2241.
  • Wu, H., Mu, T., Ge, H., and Xing, Y. (2016). Full-Range Soft-Switching-Isolated Buck-Boost Converters With Integrated Interleaved Boost Converter and Phase-Shifted Control," in IEEE Transactions on Power Electronics, 31, 987-999.
  • H. Liu, Y. Ji, L. Wang and P. Wheeler, "A Family of Improved Magnetically Coupled Impedance Network Boost DC–DC Converters," in IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3697-3702, May 2018. doi: 10.1109/TPEL.2017.2763153.
  • Rana, N., Kumar, M., Ghosh, A., and Banerjee, S. (2018) A Novel Interleaved Tri-State Boost Converter with Lower Ripple and Improved Dynamic Response," in IEEE Transactions on Industrial Electronics, 65, 5456-5465.
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., and Lehman, B. (2017). Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications, IEEE Transactions on Power Electronics, 32, 9143-9178.
  • Pandey, S. K., Patil, S. L., Phadke, S. B. (2018). Comment on “PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters, IEEE Transactions on Industrial Electronics, 65, 5078-5080.
  • Lee, S., Do, H. (2018). High Step-Up Coupled-Inductor Cascade Boost DC–DC Converter With Lossless Passive Snubber, IEEE Transactions on Industrial Electronics, 65, 7753-7761.
  • Kim, J., Choi, H., Won, C. (2018). New Modulated Carrier Controlled PFC Boost Converter, IEEE Transactions on Power Electronics, 33, 4772-4782.
  • Kim, I. H., and Son, Y. I. (2017). Regulation of a DC/DC Boost Converter Under Parametric Uncertainty and Input Voltage Variation Using Nested Reduced-Order PI Observers, IEEE Transactions on Industrial Electronics, 64, 552-562.
  • Genc, N., Uzmus, H., and Iskender, I. (2016). Dynamic behavior of dc-dc boost converter controlled with cascade PI-ASC, 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, 1-4.
  • Rabiaa, O., Mouna, B. H., Lassaad, S., Aymen, F., and Aicha, A. (2018). Cascade Control Loop of DC-DC Boost Converter Using PI Controller, 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 2018, pp. 1-5.
  • Mohanty, P. R. and Panda, A. K. (2017). Fixed-Frequency Sliding-Mode Control Scheme Based on Current Control Manifold for Improved Dynamic Performance of Boost PFC Converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, 5, 576-586.
  • Chincholkar, S. H., Jiang, W., and Chan, C. (2018). A Modified Hysteresis-Modulation-Based Sliding Mode Control for Improved Performance in Hybrid DC–DC Boost Converter, IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 1683-1687.
  • Mokhtar, M., Marei, M. I., and El-Sattar, A. A. (2019). An Adaptive Droop Control Scheme for DC Microgrids Integrating Sliding Mode Voltage and Current Controlled Boost Converters, IEEE Transactions on Smart Grid, 10, 1685-1693.
  • Ghaderi, D., Bayrak, G. (2019). A Novel Step-Up Power Converter Configuration for Solar Energy Application, Elektronika ir Elektronicha, 25, 50-55.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Davood Ghaderi This is me 0000-0003-2234-3453

Publication Date August 31, 2019
Published in Issue Year 2019

Cite

APA Ghaderi, D. (2019). Space State Matrices Based Novel PI and Sliding Mode Controllers for Step-Up Converters in Renewable Energy Applications. Avrupa Bilim Ve Teknoloji Dergisi(16), 841-854. https://doi.org/10.31590/ejosat.590831