Theoritical Investigation of Disturbance Rejection Performance of PIDA Controllers
Year 2020,
, 42 - 53, 15.04.2020
Necati Özbey
,
Celaleddin Yeroğlu
,
Barış Baykant Alagöz
Abstract
Proportional Integral Derivative (PID) controllers, which are the most widely used in the field of control and industry, sometimes become insufficient in higher order systems. Proportional Integral Derivative Acceleration (PIDA) controllers were suggested to respond more effectively than PID in high-order systems in some up-to-date references. But, environmental disturbances and internal noise generated by the system can seriously affect PIDA controller performance. In negative unity feedback closed-loop control systems, investigating the Disturbance Rejection Capacity with the Reference to Disturbance Rate (RDR) may contribute disturbance rejection performance. RDR defines the ratio of the output signal and the noise signal of the system. The control of disturbance rejection, proposed in this paper, aims to design a controller that reduces the negative effects of noise on control performance. The paper determines the disturbance rejection performance of PIDA controller designed with Random Search (RS) algorithm in a closed loop feedback system.
References
- [1] Kuo B. C., Golnaraghif.,(2010). Automatic Control Systems,9th Ed., Wiley Press, USA.
- [2] Dorf, R. C. Bishop, R. H., (2010). Modern Control Systems,12th Ed., Prentice-Hall, New Jersey, USA.
- [3] Jung, S. Dorf, R. C., (1996).Analytic PIDA Controller Design Technique for A Third OrderSystem.Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 2513–2518. DOI: 10.1109/CDC.1996.573472.
- [4] Ha, D-Y. Lee, I-Y. Cho, Y.S. LimY-D. Choi, B-K. (2001).The Design of PIDA Controller withPre-compensator.Proceedings of the IEEE International Symposium ISIE, Pusan, Korea, pp. 798-804, DOI:10.1109/ISIE.2001.931570.
- [5] Deniz, F. N., Keles, C., Alagoz, B. B., & Tan, N. (2014, June). Design of fractional-order PI controllers for disturbance rejection using RDR measure. In ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014 (pp. 1-6). IEEE.
- [6] Alagoz, B. B. Deniz, F. N. Keles, C. Tan, N. (2015). Disturbance Rejection Performance Analyses of Closed-Loop Control Systems by Reference to Disturbance Ratio. ISA Transactions, vol. 55, pp. 63-71, DOI: 10.1016/j.isatra.2014.09.013.
- [7] Alagoz, B. B., Tan, N., Deniz, F. N., Keles, C. (2015). Implicit disturbance rejection performance analysis of closed-loop control systems according to communication channel limitations. IET Control Theory & Applications, vol. 9(17), pp. 2522-2531.
- [8] Ates, A., Alagoz, B. B., Yeroglu, C., Yuan, J., & Chen, Y. (2017, August). Disturbance rejection FOPID control of the rotor by the multi-objective BB-BC optimization algorithm. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V009T07A025-V009T07A025). American Society of Mechanical Engineers.
- [9] Tepljakov, A., Alagoz, B. B., Gonzalez, E., Petlenkov, E., &Yeroglu, C. (2018). Model reference adaptive control scheme for retuning method-based fractional-order PID control with disturbance rejection applied to closed-loop control of a magnetic levitation system. Journal of Circuits, Systems, and Computers, 27(11), 1850176.
- [10] Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. (2008). Tuning and auto-tuning of fractional order controllers for industry applications. Control engineering practice, 16(7), 798-812.
- [11] Vrancic, D. Strmcnik, S. Kocijan, Moura Oliveira, J. P. B. (2010). Improving Disturbance Rejection of PID Controllers by Means of the Magnitude Optimum Method. ISA transactions, vol. 49, pp. 47-56,DOI:10.1016/j.isatra.2009.08.002.
- [12] Krohling, A. R. Rey, J. P. (2001). Design of Optimal Disturbance Rejection PID Controllers Using Genetic Algorithms IEEE Transactions on Evolutionary Computation, Vol. 5, No. 1, pp. 78-82, DOI:10.1109/4235.910467.
- [13] Ahmad, A. A. Hussein, E. M. (2014). Effect of Disturbance on Closed-Loop Control System. IJIREST, Vol.3, Issue 8, pp.15672-15676, DOI:10.15680/IJIRSET.2014.0308080
- [14] Chen, D. Seborg, D. E. (2002). PI/PID Controller Design Based on Direct Synthesis and Disturbance Rejection. Ind. Eng. Chem. Res., Vol. 41, pp.4807-4822, https://doi.org/10.1021/ie010756m.
- [15] Vandeursen, J. E. Peperstraete, J. A. (1996). Model-based and PID Controllers for Disturbance Rejection in Processes with Time Delay: AComparison. ISATransaction 35, pp. 225-236, https://doi.org/10.1016/S0019-0578(96)00031-6.
- [16] Özbey, N. Yeroğlu, C. Alagöz, B.B. (2018). A Set-point Filter Type 2DOF Fractional Order PID Control System Design Scheme for Improved Disturbance Rejection Control. The International Conference on Fractional Differentiation and its Applications (ICFDA), 16-18 July 2018, Amman. DOI:10.2139/ssrn.3273677.
- [17] Alsogkier, I. Bohu, C. (2017). Rejection and Compensation of Periodic Disturbance in Control Systems. IJEIT, Vol.4, No.1, pp.44-54.
- [18] Chang, J. L. (2011). Robust Output Feedback Disturbance Rejection Control by Simultaneously Estimating State and Disturbance. Journal of Control Science and Engineering, pp. 1-13, http://dx.doi.org/10.1155/2011/568379.
- [19] Busawon, K. K. Kabore, P. (2001). Disturbance Attenuation Using Proportional Integral Observers. International Journal of Control 74:6, pp. 618-627, https://doi.org/10.1080/00207170010025249.
- [20] Shamsuzzoha, M. Lee, M. (2009). Enhanced Disturbance Rejection for Open-loop Unstable Process with Time Delay. ISA Transactions, Vol.48, Issue 2, pp. 237-244, https://doi.org/10.1016/j.isatra.2008.10.010.
- [21] Szita, G. Sanathanan, C. K. (1997). "Robust Design for Disturbance Rejection in Time-Delay Systems. J. Franklin Inst., Vol. 334B, No.4, pp. 611-629, https://doi.org/10.1016/S0016-0032(96)00090-7.
- [22] Koussiouris, T. G. Tzierakis, K.G. (1996). Frequency-domain Conditions for Disturbance Rejection and Decoupling with Stability or Pole Placement Automatica, Vol.32, No.2, pp. 229-234, https://doi.org/10.1016/0005-1098(96)85552-X.
- [23] Price, W. L. (1983). Global Optimization by Controlled Random Search. Journal Of Optimization Theory and Applications, Vol. 40, No. 3, pp. 333-348, https://doi.org/10.1007/BF00933504.
- [24] Andradóttir, S. (1999). Accelerating the Convergence of Random Search Methods for Discrete Stochastic Optimization. Journal of Association for Computing Machinery, Vol. 9, No. 4, pp. 349−380, DOI:10.1145/352222.352225.
- [25] Sambariya, D. K. Paliwal, D. (2016). Comparative Design and Analysis of PIDA Controller Using Kitti's and Jung-Dorf Approach for Third Order Practical Systems. British Journal of Mathematics & Computer Science Vol. 16, No. 5, pp.1-16, DOI: 10.9734/BJMCS/2016/26223
- [26] Photong, P. Kampanaya, D. Komine, N. Ngamwiwit, J. (2000). Application of CDM to PIDA control. ASCC 3rd, July 3-7, Shanghai, TD-9-4, pp. 2073-2078.
- [27] Ukakimaparn, P. Pannil, P. Boonchuay, P. Trisuwannawat, T. (2009). PIDA Controller Designed by Kitti’s Method. ICROS-SICE, International Joint Conference, August 18-21, https://ieeexplore.ieee.org/abstract/document/5335323.
- [28] Sambariya, D. K. Paliwal, D. (2016). Optimal Design of PIDA Controller Using Harmony Search Algorithm for AVR Power System. IEEE 6th International Conference on Power Systems (ICPS), pp. 1-6. 4-6 March, DOI:10.1109/ICPES.2016.7584219.
- [29] Sambariya, D .K. Paliwal, D. (2016). Optimal Design of PIDA Controller Using Firefly Algorithm for AVR Power System. International Conference on Computing, Communication, and Automation (ICCCA), pp. 987-992, DOI:10.1109/ CCAA.2016.7813859.
- [30] Donuk, K. Özbey, N. İnan, M. Yeroğlu, C. Hanbay, D. (2018). PIDA Denetçi Parametrelerinin PSO Algoritması ile Belirlenmesi. 2018 International Conference on ArtificialIntelligenceand Data Processing (IDAP), 28-30 Sept. 2018, pp. 107-112. DOI: 10.1109/IDAP.2018.8620871
- [31] Karadeniz, E. Özbey, N. Yeroğlu, C. Kahraman, H.T. (2018). SOS Algoritması ile Tasarlanan PIDA Denetçinin Bozucu Bastırma Etkisi. 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), 28-30 Sept. 2018, pp.549-553. DOI: 10.1109/IDAP.2018.8620800.
- [32] Rojas, A. J. (2009). Signal-to-noise Ratio Performance Limitations for Input Disturbance Rejection in Output Feedback Control. Systems & Control Letters, Vol.58:5, pp. 353–358, https://doi.org/10.1016/j.sysconle.2009.01.001.
- [33] Ateş, A., & Yeroğlu, C. (2016). Online tuning of two degrees of freedom fractional order control loops. Balkan Journal of Electrical and Computer Engineering, 4(1), 5-11.
- [34] Ogata, K. (2010). Modern Control Engineering, 5th Ed., Pearson Education, New Jersey, USA.
PIDA Denetçilerin Bozucu Dışlama Performansının Teorik İncelenmesi
Year 2020,
, 42 - 53, 15.04.2020
Necati Özbey
,
Celaleddin Yeroğlu
,
Barış Baykant Alagöz
Abstract
Kontrol alanında ve endüstride çok yaygın kullanılan PID denetçiler yüksek dereceli sistemlerde bazen yetersiz kalmaktadırlar. Oransal Integral Türevsel Ivme (Proportional Integral Derivative Acceleration/PIDA) denetçilerin, Oransal Integral Türevsel (Proportional Integral Derivative/PID) denetçiye göre yüksek dereceli sistemlerde daha etkin cevap verdiği bazı güncel çalışmalarda gösterilmiştir. Ancak PIDA denetçilerde de çevresel bozucular ve sistem tarafından oluşturulan iç gürültüler denetçi performansını olumsuz etkileyebilmektedir. Kapalı çevrim kontrol sistemlerinde referansa bozucu oranı (Reference to Disturbance Rate/RDR) ile gürültü bastırma kapasitesinin belirlenmesine, bozucu dışlama etkinliğinin artırılmasına katkı sağlayabilir. RDR indeksi kapalı çevrim kontrol sistemlerinin çıkışında referans giriş sinyalinin eklemsel giriş bozucu sinyale oranını ifade eder. Bu yayında önerilen bozucu bastırma kontrolü, çevresel bozucu etmenlerin denetçi performansı üzerindeki olumsuz etkilerinin azaltılmasını sağlayan bir denetçi tasarımını hedeflenmektedir. Çalışmada kapalı çevirim birim geri beslemeli bir sistemde Rastgele Arama (RandomSearch/RS) algoritması ile tasarlanan PIDA denetçinin bozucu dışlama performansı incelenmiştir.
References
- [1] Kuo B. C., Golnaraghif.,(2010). Automatic Control Systems,9th Ed., Wiley Press, USA.
- [2] Dorf, R. C. Bishop, R. H., (2010). Modern Control Systems,12th Ed., Prentice-Hall, New Jersey, USA.
- [3] Jung, S. Dorf, R. C., (1996).Analytic PIDA Controller Design Technique for A Third OrderSystem.Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 2513–2518. DOI: 10.1109/CDC.1996.573472.
- [4] Ha, D-Y. Lee, I-Y. Cho, Y.S. LimY-D. Choi, B-K. (2001).The Design of PIDA Controller withPre-compensator.Proceedings of the IEEE International Symposium ISIE, Pusan, Korea, pp. 798-804, DOI:10.1109/ISIE.2001.931570.
- [5] Deniz, F. N., Keles, C., Alagoz, B. B., & Tan, N. (2014, June). Design of fractional-order PI controllers for disturbance rejection using RDR measure. In ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014 (pp. 1-6). IEEE.
- [6] Alagoz, B. B. Deniz, F. N. Keles, C. Tan, N. (2015). Disturbance Rejection Performance Analyses of Closed-Loop Control Systems by Reference to Disturbance Ratio. ISA Transactions, vol. 55, pp. 63-71, DOI: 10.1016/j.isatra.2014.09.013.
- [7] Alagoz, B. B., Tan, N., Deniz, F. N., Keles, C. (2015). Implicit disturbance rejection performance analysis of closed-loop control systems according to communication channel limitations. IET Control Theory & Applications, vol. 9(17), pp. 2522-2531.
- [8] Ates, A., Alagoz, B. B., Yeroglu, C., Yuan, J., & Chen, Y. (2017, August). Disturbance rejection FOPID control of the rotor by the multi-objective BB-BC optimization algorithm. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V009T07A025-V009T07A025). American Society of Mechanical Engineers.
- [9] Tepljakov, A., Alagoz, B. B., Gonzalez, E., Petlenkov, E., &Yeroglu, C. (2018). Model reference adaptive control scheme for retuning method-based fractional-order PID control with disturbance rejection applied to closed-loop control of a magnetic levitation system. Journal of Circuits, Systems, and Computers, 27(11), 1850176.
- [10] Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. (2008). Tuning and auto-tuning of fractional order controllers for industry applications. Control engineering practice, 16(7), 798-812.
- [11] Vrancic, D. Strmcnik, S. Kocijan, Moura Oliveira, J. P. B. (2010). Improving Disturbance Rejection of PID Controllers by Means of the Magnitude Optimum Method. ISA transactions, vol. 49, pp. 47-56,DOI:10.1016/j.isatra.2009.08.002.
- [12] Krohling, A. R. Rey, J. P. (2001). Design of Optimal Disturbance Rejection PID Controllers Using Genetic Algorithms IEEE Transactions on Evolutionary Computation, Vol. 5, No. 1, pp. 78-82, DOI:10.1109/4235.910467.
- [13] Ahmad, A. A. Hussein, E. M. (2014). Effect of Disturbance on Closed-Loop Control System. IJIREST, Vol.3, Issue 8, pp.15672-15676, DOI:10.15680/IJIRSET.2014.0308080
- [14] Chen, D. Seborg, D. E. (2002). PI/PID Controller Design Based on Direct Synthesis and Disturbance Rejection. Ind. Eng. Chem. Res., Vol. 41, pp.4807-4822, https://doi.org/10.1021/ie010756m.
- [15] Vandeursen, J. E. Peperstraete, J. A. (1996). Model-based and PID Controllers for Disturbance Rejection in Processes with Time Delay: AComparison. ISATransaction 35, pp. 225-236, https://doi.org/10.1016/S0019-0578(96)00031-6.
- [16] Özbey, N. Yeroğlu, C. Alagöz, B.B. (2018). A Set-point Filter Type 2DOF Fractional Order PID Control System Design Scheme for Improved Disturbance Rejection Control. The International Conference on Fractional Differentiation and its Applications (ICFDA), 16-18 July 2018, Amman. DOI:10.2139/ssrn.3273677.
- [17] Alsogkier, I. Bohu, C. (2017). Rejection and Compensation of Periodic Disturbance in Control Systems. IJEIT, Vol.4, No.1, pp.44-54.
- [18] Chang, J. L. (2011). Robust Output Feedback Disturbance Rejection Control by Simultaneously Estimating State and Disturbance. Journal of Control Science and Engineering, pp. 1-13, http://dx.doi.org/10.1155/2011/568379.
- [19] Busawon, K. K. Kabore, P. (2001). Disturbance Attenuation Using Proportional Integral Observers. International Journal of Control 74:6, pp. 618-627, https://doi.org/10.1080/00207170010025249.
- [20] Shamsuzzoha, M. Lee, M. (2009). Enhanced Disturbance Rejection for Open-loop Unstable Process with Time Delay. ISA Transactions, Vol.48, Issue 2, pp. 237-244, https://doi.org/10.1016/j.isatra.2008.10.010.
- [21] Szita, G. Sanathanan, C. K. (1997). "Robust Design for Disturbance Rejection in Time-Delay Systems. J. Franklin Inst., Vol. 334B, No.4, pp. 611-629, https://doi.org/10.1016/S0016-0032(96)00090-7.
- [22] Koussiouris, T. G. Tzierakis, K.G. (1996). Frequency-domain Conditions for Disturbance Rejection and Decoupling with Stability or Pole Placement Automatica, Vol.32, No.2, pp. 229-234, https://doi.org/10.1016/0005-1098(96)85552-X.
- [23] Price, W. L. (1983). Global Optimization by Controlled Random Search. Journal Of Optimization Theory and Applications, Vol. 40, No. 3, pp. 333-348, https://doi.org/10.1007/BF00933504.
- [24] Andradóttir, S. (1999). Accelerating the Convergence of Random Search Methods for Discrete Stochastic Optimization. Journal of Association for Computing Machinery, Vol. 9, No. 4, pp. 349−380, DOI:10.1145/352222.352225.
- [25] Sambariya, D. K. Paliwal, D. (2016). Comparative Design and Analysis of PIDA Controller Using Kitti's and Jung-Dorf Approach for Third Order Practical Systems. British Journal of Mathematics & Computer Science Vol. 16, No. 5, pp.1-16, DOI: 10.9734/BJMCS/2016/26223
- [26] Photong, P. Kampanaya, D. Komine, N. Ngamwiwit, J. (2000). Application of CDM to PIDA control. ASCC 3rd, July 3-7, Shanghai, TD-9-4, pp. 2073-2078.
- [27] Ukakimaparn, P. Pannil, P. Boonchuay, P. Trisuwannawat, T. (2009). PIDA Controller Designed by Kitti’s Method. ICROS-SICE, International Joint Conference, August 18-21, https://ieeexplore.ieee.org/abstract/document/5335323.
- [28] Sambariya, D. K. Paliwal, D. (2016). Optimal Design of PIDA Controller Using Harmony Search Algorithm for AVR Power System. IEEE 6th International Conference on Power Systems (ICPS), pp. 1-6. 4-6 March, DOI:10.1109/ICPES.2016.7584219.
- [29] Sambariya, D .K. Paliwal, D. (2016). Optimal Design of PIDA Controller Using Firefly Algorithm for AVR Power System. International Conference on Computing, Communication, and Automation (ICCCA), pp. 987-992, DOI:10.1109/ CCAA.2016.7813859.
- [30] Donuk, K. Özbey, N. İnan, M. Yeroğlu, C. Hanbay, D. (2018). PIDA Denetçi Parametrelerinin PSO Algoritması ile Belirlenmesi. 2018 International Conference on ArtificialIntelligenceand Data Processing (IDAP), 28-30 Sept. 2018, pp. 107-112. DOI: 10.1109/IDAP.2018.8620871
- [31] Karadeniz, E. Özbey, N. Yeroğlu, C. Kahraman, H.T. (2018). SOS Algoritması ile Tasarlanan PIDA Denetçinin Bozucu Bastırma Etkisi. 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), 28-30 Sept. 2018, pp.549-553. DOI: 10.1109/IDAP.2018.8620800.
- [32] Rojas, A. J. (2009). Signal-to-noise Ratio Performance Limitations for Input Disturbance Rejection in Output Feedback Control. Systems & Control Letters, Vol.58:5, pp. 353–358, https://doi.org/10.1016/j.sysconle.2009.01.001.
- [33] Ateş, A., & Yeroğlu, C. (2016). Online tuning of two degrees of freedom fractional order control loops. Balkan Journal of Electrical and Computer Engineering, 4(1), 5-11.
- [34] Ogata, K. (2010). Modern Control Engineering, 5th Ed., Pearson Education, New Jersey, USA.