Research Article
BibTex RIS Cite

Effect of Initial Configuration on DFT Calculations for Transition Metal Complexes

Year 2019, , 256 - 269, 31.10.2019
https://doi.org/10.31590/ejosat.638072

Abstract

Computational methods, which solves the Schrödinger’s equation for molecules, have become an indispensable tool in last decades. And Density Functional Theory is one of the most used, and most effective computational method.
Transition Metal complexes, on the other hand, have been being used extensively in many important applications in many fields, such as chemical catalysts, atomic thin films, and pharmaceutical industry. Applying computational methods to transition metal complexes has become inevitable to understand better, to control and to design these compounds.
As it is known, it is very difficult to handle transition metals computationally, mostly due to near degeneracy in their electronic states. The computational algorithms usually cannot achieve as successive result as they can do for other typical elements, like carbon or nitrogen for instance. Computational methods are needed to be improved for properly deal with transition metal complexes. To find computationally cheaper but still effective methods to deal with these complexes is a major challenge.
Unlike the analogue calculations, computational methods solve all equations iteratively, so there are major differences between these two calculation types. The starting point in state space (the assumed initial conformation of molecule) is could have a stronger effect then the expected, on the flow of the iterative solving algorithm of the computational approach.
Here we present a comparative study for a Ruthenium complex. We have optimised the molecule several times. Each of the optimisations started from different initial molecular conformations. Then we have compared the result in different ways, like calculation times and minimum energy that had reached, to see effect of starting configurations on the calculation.
It is showed that, starting configuration is an important parameter for computational calculations of transition metal complexes, and it is needed to be carefully chosen to improve success of calculations.

References

  • Car, R., & Parrinello, M. (1985). Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters, 55(22), 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471
  • Dykstra, C., Frenking, G., & Kim, K. (2011). Theory and Applications of Computational Chemistry: The First Forty Years. Retrieved from http://qut.eblib.com.au/patron/FullRecord.aspx?p=269993
  • Elstner, M., Frauenheim, T., & Suhai, S. (2003). An approximate DFT method for QM/MM simulations of biological structures and processes. Journal of Molecular Structure: THEOCHEM, 632(1–3), 29–41. https://doi.org/10.1016/S0166-1280(03)00286-0
  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864
  • Kim, M.-C., Park, H., Son, S., Sim, E., & Burke, K. (2015). Improved DFT Potential Energy Surfaces via Improved Densities. The Journal of Physical Chemistry Letters, 6(19), 3802–3807. https://doi.org/10.1021/acs.jpclett.5b01724
  • Pinter, B., Chankisjijev, A., Geerlings, P., Harvey, J. N., & De Proft, F. (2018). Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis. Chemistry - A European Journal, 24(20), 5281–5292. https://doi.org/10.1002/chem.201704657
  • Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., … Montgomery, J. A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14(11), 1347–1363. https://doi.org/10.1002/jcc.540141112
  • Siegbahn, P. E. M. (2006). The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. JBIC Journal of Biological Inorganic Chemistry, 11(6), 695–701. https://doi.org/10.1007/s00775-006-0137-2
  • Stevens, W. J., Krauss, M., Basch, H., & Jasien, P. G. (1992). Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Canadian Journal of Chemistry, 70(2), 612–630. https://doi.org/10.1139/v92-085
  • Witte, J., Neaton, J. B., & Head-Gordon, M. (2017). Effective empirical corrections for basis set superposition error in the def2-SVPD basis: GCP and DFT-C. The Journal of Chemical Physics, 146(23), 234105. https://doi.org/10.1063/1.4986962
  • Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1–3), 51–57. https://doi.org/10.1016/j.cplett.2004.06.011
  • Zhang, Z., Yang, S., Dou, M., Liu, H., Gu, L., & Wang, F. (2016). Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Advances, 6(71), 67049–67056. https://doi.org/10.1039/C6RA12426G

Geçiş Metalleri İçin Yürütülen DFT Hesaplamalarına Başlangıç Konfigürasyonunun Etkisi

Year 2019, , 256 - 269, 31.10.2019
https://doi.org/10.31590/ejosat.638072

Abstract

Moleküller için Schrödinger denklemini çözen hesaplamalı kimya metodları, son yıllarda gözardı edilemez araçlar haline gelmiştir. Density Functional Theory (DFT) de bu metodlar arasında en etkili olup, en çok kullanılanlardan biri olagelmiştir.
Geçiş metalleri, öte yandan, kimyasal katalizörler, atomic ince film üretimi, ilaç endüstrisi gibi sayılabilecek pek çok alanda önemli uygulamalarda artan bir yoğunlukta kullanılagelmiştir. Bu çerçevede hesaplamalı kimya araçlarının geçiş metalleri için uygulanması, bu bileşikleri deha iyi anlamak, control etmek ve tasarlamak için kaçınılmaz hale gelmiştir.
Bilindiği üzere geçiş metallerini hesaplamalı araçlarla ele almak, sahip oldukları dejenere kuantum durumları nedeniyle, oldukça zordur. Bu nedenle hesaplamalı kuantum kimya algoritmaları, diğer elementlerin bileşikleri için elde ettikleri başarıyı, geçiş metalleri için de en azından aynı kolaylıkla elde edemezler.
Bu nedenle hesaplama araçlarının, geçiş metallerini daha kolay ele alabilecek şekilde geliştirilmesine ihtiyaç duyulmaktadır. Geçiş metallerini ele almak üzere, daha az hesaplama kaynağı gerektiren ama öte yandan daha efektif yöntemler bulmak, günümüz araştırmacılarının yoğun olarak uğraştığı konulardan biridir.
Analog çözümlerden farklı olarak, nümerik yaklaşımlar denklemleri iteratif yollarla çözerler, dolayısıyla bu iki çözüm yöntemi arasında temel farklılıklar vardır. Durum uzayındaki başlangıç noktanız, nümerik yaklaşımınızdaki iteratif bir çözüm sürecinin akışı üzerinde beklentinin üzerinde, dramatik şekilde etkili olabilir.
Biz burada, bir geçiş metali olan Ruthenium içeren bir bileşik için karşılaştırmalı bir çalışma yürüttük. Söz konusu molekülü, her seferinde farklı bir başlangıç konfigürasyonu kullanarak defalarca optimize ettik. Sonrasında, farklı başlangıç noktalarının etkilerin görmek üzere, sonuçları, hesaplama zamanlarındaki değişim, varılan minimum enerji konfigürasyonlarındaki farklılık gibi değişik açılardan kıyasladık.
Sonuçta başlangıç konfigürasyonunun, geçiş metali içeren bileşikler için yürütülen nümerik hesaplamalarda önemli bir parameter olduğunu ve hesaplamaların başarısını arttırmak için dikkatli seçilmesi gerektiğini ortaya koyduk.

References

  • Car, R., & Parrinello, M. (1985). Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters, 55(22), 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471
  • Dykstra, C., Frenking, G., & Kim, K. (2011). Theory and Applications of Computational Chemistry: The First Forty Years. Retrieved from http://qut.eblib.com.au/patron/FullRecord.aspx?p=269993
  • Elstner, M., Frauenheim, T., & Suhai, S. (2003). An approximate DFT method for QM/MM simulations of biological structures and processes. Journal of Molecular Structure: THEOCHEM, 632(1–3), 29–41. https://doi.org/10.1016/S0166-1280(03)00286-0
  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864
  • Kim, M.-C., Park, H., Son, S., Sim, E., & Burke, K. (2015). Improved DFT Potential Energy Surfaces via Improved Densities. The Journal of Physical Chemistry Letters, 6(19), 3802–3807. https://doi.org/10.1021/acs.jpclett.5b01724
  • Pinter, B., Chankisjijev, A., Geerlings, P., Harvey, J. N., & De Proft, F. (2018). Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis. Chemistry - A European Journal, 24(20), 5281–5292. https://doi.org/10.1002/chem.201704657
  • Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., … Montgomery, J. A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14(11), 1347–1363. https://doi.org/10.1002/jcc.540141112
  • Siegbahn, P. E. M. (2006). The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. JBIC Journal of Biological Inorganic Chemistry, 11(6), 695–701. https://doi.org/10.1007/s00775-006-0137-2
  • Stevens, W. J., Krauss, M., Basch, H., & Jasien, P. G. (1992). Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Canadian Journal of Chemistry, 70(2), 612–630. https://doi.org/10.1139/v92-085
  • Witte, J., Neaton, J. B., & Head-Gordon, M. (2017). Effective empirical corrections for basis set superposition error in the def2-SVPD basis: GCP and DFT-C. The Journal of Chemical Physics, 146(23), 234105. https://doi.org/10.1063/1.4986962
  • Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1–3), 51–57. https://doi.org/10.1016/j.cplett.2004.06.011
  • Zhang, Z., Yang, S., Dou, M., Liu, H., Gu, L., & Wang, F. (2016). Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Advances, 6(71), 67049–67056. https://doi.org/10.1039/C6RA12426G
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nil E. Binbay 0000-0002-2488-0378

Veysel Binbay This is me 0000-0002-1018-5438

Murat Aydemir This is me 0000-0002-4238-5012

Feyyaz Durap This is me

Nermin Meriç This is me 0000-0003-0456-5124

Cezmi Kayan This is me 0000-0001-5700-8546

Nevin Arslan This is me 0000-0003-0142-9215

Publication Date October 31, 2019
Published in Issue Year 2019

Cite

APA E. Binbay, N., Binbay, V., Aydemir, M., Durap, F., et al. (2019). Effect of Initial Configuration on DFT Calculations for Transition Metal Complexes. Avrupa Bilim Ve Teknoloji Dergisi256-269. https://doi.org/10.31590/ejosat.638072