A lot of vehicles have been used to transport people's needs and goods from one area to another. These tools include all the tools from ancient times to the present. Intelligent traffic signaling systems are needed due to the increase in the number of vehicles in the traffic, the insufficiency of the areas around the roads used and the inability to expand these roads or lower / upper roads. At present, traffic control is not sufficient due to the fixed time of the traffic system mechanisms. Traffic signaling systems that react to changing traffic conditions are an important component to improve transport efficiency. Based on data recorded to improve timing plans, today's traditional controllers are no longer the solution to preventing traffic congestion at traffic junctions and the adverse consequences of this congestion due to the increasing traffic density and the number of vehicles on the road. It is designed using techniques such as traffic control mechanisms, Fuzzy logic, PLC and Petri net networks to adapt to human thinking. In this study, a control study was conducted for a four-way intersection using the Fuzzy Logic (BM) method and classical (Fixed time) method with real data under the intelligent control mechanism of traffic lights. MATLAB programming language is used for the software part. In the results of working; The results of performance of fuzzy logic controller and classical controller were compared. The exit is determined according to the rules of fuzzy logic and the duration of the green light on that street. Blurring the numerical data of the input and output parameters enabled us to obtain an intelligent control system for the duration of the green light according to the number of cars and the street selection thanks to the rule set of the fuzzy logic. Using the same data in the classical method, fuzzy logic method was found to be more effective than the classical method. In the fuzzy logic method, the number of cars on each street at the intersection was determined as the entrance at certain times.
Fuzzy Logic Traffic Lights Control Intelligent Traffic Signaling Fixed Time Traffic Control
Ulaşım araçları, insanların ihtiyaçlarını ve mallarını bir alandan
diğer bir alana taşımak amacıyla kullanılan araçları ifade eder. Bu araçlar,
eski çağlardan günümüz zamanına kadarki tüm araçları içerir. Trafikteki araç sayılarının artması, kullanılan
yollar etrafındaki alanların yetersizliği ve bu yolların genişletilememesi veya
alt/üst yollar yapılamaması sebebiyle akıllı trafik sinyalizasyon sistemlerine
ihtiyaç duyulmaktadır. Günümüzde, trafik sistem mekanizmalarının sabit zamana
bağlı olması sebebiyle trafik kontrolü yeterli değildir. Değişen trafik koşullarına tepki veren trafik
sinyal sistemleri, ulaşım verimliliğini artırmak için önemli bir bileşendir.
Zamanlama planlarını iyileştirmek amacıyla kaydedilen verilere dayanılarak
geliştirilen bugünkü geleneksel denetleyiciler, artık zamana göre değişen
trafik yoğunluğuna ve yolda artan araç sayısı nedeniyle trafik kavşaklarındaki
tıkanıklığı ve bu tıkanıklığın kötü sonuçlarını önlemeye çözüm olamamaktadır.
İnsan düşüncesine uyum sağlayarak ulaşımı yönlendirecek trafik denetleme
mekanizmaları, Bulanık mantık, PLC ve Petri net ağları gibi teknikler
kullanılarak tasarlanmaktadır. Bu çalışmada dört yollu bir kavşak için trafik
ışıkların akıllı denetim mekanizması altında gerçek verilerle Bulanık Mantık
(BM) yöntemi ve klasik (Sabit zaman)
yöntemi kullanarak bir kontrol çalışması yapılmıştır. Yazılım kısmı için
MATLAB programlama dili kullanılmıştır. Çalışma sonucunda; Bulanık mantık
denetleyici ve klasik denetleyici, performanslarının
sonuçları karşılaştırılmıştır. Bulanık mantık yönteminde, belirli saatlerde
kavşakta bulunan her caddedeki arabaların sayısı giriş olarak belirlenmiştir.
Çıkış ise bulanık mantığın kurallarına göre seçilecek cadde ve o caddedeki
yeşil ışığının süresi olarak belirlenmiştir. Giriş ve çıkış parametrelerinin
sayısal verileri bulanıklaştırılması, bulanık mantığın kural seti sayesinde
araba sayısına göre yeşil ışığın süresi ve cadde seçiminde akıllı bir kontrol
sistemi elde etmemizi sağlayabilmiştir. Aynı verileri klasik yöntemde de
kullanarak, bulanık mantık yönteminin klasik yönteminden daha etkin olduğu
görülmüştür.
Bulanık Mantık Trafik Işıkları Kontrolü Akıllı trafik Sinyalizasyonu sabit süreli trafik kontrolü
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | October 31, 2019 |
Published in Issue | Year 2019 |