Research Article
BibTex RIS Cite

Modification of Perovskite/Spiro-OMeTAD Interface with Thiol Molecules for the Fabrication of Highly Efficient and Long-Term Stable Perovskite Solar Cells

Year 2019, , 727 - 735, 31.12.2019
https://doi.org/10.31590/ejosat.640344

Abstract

The surface morphology of the perovskite material with surface / boundary defects, high sensitivity to humidity, and ion migration into the cell under operational conditions are among the most important problems of perovskite solar cells. Interfacial engineering is one of the most effective methods against to such problems in perovskite solar cells. In this study, the cells in which thiol derivative 1-phenyl-1H-tetrazole-5-thiol (PT(thiol)) molecules were used as an interfacial layer between perovskite / spiro-OMeTAD have been fabricated. The open circuit voltage (VOC) values of the cells using the interface layer were improved by 40 mV and the efficiency of 19.5% was obtained. This improvement in photovoltaic performance is explained by the passivation of recombination centers on the surface of the perovskite layer and at the grain boundaries; it is also determined that the interface layer contributes to the problem of operational stability. Stability test performing under continuous illumination and 40% relative humidity displayed that the cell including interlayer maintained 75% of its initial efficiency after 300 hours. As a result, PT(thiol) molecules have the potential to provide solution to the stability problem, which is one of the most important problems of perovskite cells; it has also been found to improve cell performance by improving surface properties.

References

  • Abu Laban, W., & Etgar, L. (2013). Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science, 6(11), 3249-3253.
  • Aitola, K., Domanski, K., Correa-Baena, J. P., Sveinbjornsson, K., Saliba, M., Abate, A., . . . Boschloo, G. (2017). High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Advanced Materials, 29(17), 1606398.
  • Akin, S., Altintas, Y., Mutlugun, E., & Sonmezoglu, S. (2019). Cesium-lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency. Nano Energy, 60, 557-566.
  • Akin, S., Liu, Y., Dar, M. I., Zakeeruddin, S. M., Gratzel, M., Turan, S., & Sonmezoglu, S. (2018). Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. Journal of Materials Chemistry A, 6(41), 20327-20337.
  • Akin, S., Ulusu, Y., Waller, H., Lakey, J. H., & Sonmezoglu, S. (2018). Insight into interface engineering at TiO2/dye through molecularly functionalized Caf1 biopolymer. Acs Sustainable Chemistry & Engineering, 6(2), 1825-1836.
  • Ameen, S., Rub, M. A., Kosa, S. A., Alamry, K. A., Akhtar, M. S., Shin, H. S., . . . Nazeeruddin, M. K. (2016). Perovskite solar cells: Influence of hole transporting materials on power conversion efficiency. Chemsuschem, 9(1), 10-27.
  • Arora, N., Dar, M. I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S. M., & Gratzel, M. (2017). Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358(6364), 768-771.
  • Bi, D. Q., Xu, B., Gao, P., Sun, L. C., Graetzel, M., & Hagfeldt, A. (2016). Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy, 23, 138-144.
  • Cao, J., Yin, J., Yuan, S. F., Zhao, Y., Li, J., & Zheng, N. F. (2015). Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale, 7(21), 9443-9447.
  • Chen, J. Z., & Park, N. G. (2018). Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. Journal of Physical Chemistry C, 122(25), 14039-14063.
  • Hoque, M. N. F., Islam, N., Li, Z., Ren, G. F., Zhu, K., & Fan, Z. Y. (2016). Ionic and optical properties of methylammonium lead iodide perovskite across the tetragonal-cubic structural phase transition. Chemsuschem, 9(18), 2692-2698.
  • Huang, L. B., Su, P. Y., Liu, J. M., Huang, J. F., Chen, Y. F., Qin, S., . . . Su, C. Y. (2018). Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability. Journal of Power Sources, 378, 483-490.
  • Huang, X., Bi, W. T., Jia, P. C., Tang, Y., Lou, Z. D., Hu, Y. F., . . . Teng, F. (2019). Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Organic Electronics, 67, 101-108.
  • Javaid, S., Myung, C. W., Pourasad, S., Rakshit, B., Kim, K. S., & Lee, G. (2018). A highly hydrophobic fluorographene-based system as an interlayer for electron transport in organic-inorganic perovskite solar cells. Journal of Materials Chemistry A, 6(38), 18635-18640.
  • Jeon, N. J., Na, H., Jung, E. H., Yang, T. Y., Lee, Y. G., Kim, G., . . . Seo, J. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3(8), 682-689.
  • Kim, H.-S., Seo, J.-Y., Akin, S., Simon, E., Fleischer, M., Zakeeruddin, S. M., . . . Hagfeldt, A. (2019). Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics. Nano Energy, 61, 126-131.
  • Lai, H., Li, X., Li, S. P., Chen, Y., Sun, B. Y., Jiang, Q. H., & Yang, J. Y. (2019). Enhancement of photovoltaic performance and moisture stability of perovskite solar cells by modification of tin phthalocyanine (SnPc). Electrochimica Acta, 296, 799-805.
  • Ma, Y. C., Hangoma, P. M., Park, W. I., Lim, J. H., Jung, Y. K., Jeong, J. H., . . . Kim, K. H. (2019). Controlled crystal facet of MAPbI3 perovskite for highly efficient and stable solar cell via nucleation modulation. Nanoscale, 11(1), 170-177.
  • Matsui, T., Petrikyte, I., Malinauskas, T., Domanski, K., Daskeviciene, M., Steponaitis, M., . . . Saliba, M. (2016). Additive-free transparent triarylamine-based polymeric hole-transport materials for stable perovskite solar cells. Chemsuschem, 9(18), 2567-2571.
  • Mei, A. Y., Li, X., Liu, L. F., Ku, Z. L., Liu, T. F., Rong, Y. G., . . . Han, H. W. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295-298.
  • National Renewable Energy Laboratory (NREL). (2019). Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
  • Pazos-Outon, L. M., Xiao, T. P., & Yablonovitch, E. (2018). Fundamental efficiency limit of lead iodide perovskite solar cells. Journal of Physical Chemistry Letters, 9(7), 1703-1711.
  • Qiu, W., Bastos, J. P., Dasgupta, S., Merckx, T., Cardinaletti, I., Jenart, M. V. C., . . . Cheyns, D. (2017). Highly efficient perovskite solar cells with crosslinked PCBM interlayers. Journal of Materials Chemistry A, 5(6), 2466-2472.
  • Quarti, C., Mosconi, E., Ball, J. M., D'Innocenzo, V., Tao, C., Pathak, S., . . . De Angelis, F. (2016). Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy & Environmental Science, 9(1), 155-163.
  • Rong, Y. G., Liu, L. F., Mei, A. Y., Li, X., & Han, H. W. (2015). Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 5(20).
  • Seo, J.-Y., Kim, H.-S., Akin, S., Stojanovic, M., Simon, E., Fleischer, M., . . . Grätzel, M. (2018). Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy & Environmental Science, 11(10), 2985-2992.
  • Sherkar, T. S., Momblona, C., Gil-Escrig, L., Avila, J., Sessolo, M., Bolink, H. J., & Koster, L. J. A. (2017). Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. Acs Energy Letters, 2(5), 1214-1222.
  • Tress, W., Yavari, M., Domanski, K., Yadav, P., Niesen, B., Baena, J. P. C., . . . Graetzel, M. (2018). Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells (vol 11, pg 151, 2018). Energy & Environmental Science, 11(3), 715-715.
  • Vidal, S., Izquierdo, M., Filippone, S., Fernandez, I., Akin, S., Seo, J. Y., . . . Martin, N. (2019). Site-selective synthesis of -[70]PCBM-like fullerenes: Efficient application in perovskite solar cells. Chemistry-A European Journal, 25(13), 3224-3228.
  • Wu, S. H., Chen, R., Zhang, S. S., Babu, B. H., Yue, Y. F., Zhu, H. M., . . . Chen, W. (2019). A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nature Communications, 10, 1161.
  • Xiang, W. C., Wang, Z. W., Kubicki, D. J., Tress, W., Luo, J. S., Prochowicz, D., . . . Hagfeldt, A. (2019). Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule, 3(1), 205-214.
  • Yang, W. S., Park, B. W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., . . . Seok, S. I. (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356(6345), 1376-1379.
  • Zhang, J. B., Xu, B., Yang, L., Mingorance, A., Ruan, C. Q., Hua, Y., . . . Johansson, E. M. J. (2017). Incorporation of counter ions in organic molecules: New strategy in developing dopant-free hole transport materials for efficient mixed-ion perovskite solar cells. Advanced Energy Materials, 7(14), 1602736.

Yüksek Verimli ve Uzun Dönem Kararlı Perovskit Güneş Hücrelerinin Üretimi için Perovskit/Spiro-OMeTAD Arayüzeyinin Thiol Molekülleri ile Modifikasyonu

Year 2019, , 727 - 735, 31.12.2019
https://doi.org/10.31590/ejosat.640344

Abstract

Perovskit malzemesinin yüzey/sınır kusurları içeren yüzey morfolojisi, yüksek nem hassasiyeti ve operasyonel koşullarda hücre içine doğru meydana gelen iyon göçü perovskit güneş hücrelerinin çözüm bekleyen en önemli problemleri arasındadır. Arayüzey mühendisliği, perovskit güneş hücrelerinde bu tür sorunlara karşı kullanılan en etkili yöntemlerden biridir. Bu çalışmada, thiol türevi 1-phenyl-1H-tetrazole-5-thiol (PT(thiol)) moleküllerinin, perovskit/spiro-OMeTAD arasında arayüzey tabakası olarak kullanıldığı hücrelerinin üretimi gerçekleştirilmiştir. Arayüzey tabakasının kullanıldığı hücrelerin açık devre gerilim (VOC) değerlerinde 40 mV iyileşme sağlanarak %19.5 verim elde edilmiştir. Fotovoltaik performanstaki bu iyileşme perovskit tabakasının yüzeyindeki ve tane sınırlarındaki rekombinasyon merkezlerinin pasivasyonu ile açıklanırken; arayüzey tabakasının operasyonel kararlılık problemine ciddi bir katkı sağladığı da tespit edilmiştir. Sürekli ışınım altında ve %40 nem içeren bir ortamda gerçekleştirilen kararlılık test sonucunda arayüzey tabakalı hücrenin 300 saat sonunda başlangıç veriminin %75’ini koruduğu tespit edilmiştir. Sonuç olarak PT(thiol) moleküllerinin perovskit hücrelerin en önemli sorunlarından biri olan kararlılık problemine çözüm sunma potansiyeli olduğu; aynı zamanda yüzey özelliklerini de iyileştirerek hücre performansını arttırdığı tespit edilmiştir.

References

  • Abu Laban, W., & Etgar, L. (2013). Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science, 6(11), 3249-3253.
  • Aitola, K., Domanski, K., Correa-Baena, J. P., Sveinbjornsson, K., Saliba, M., Abate, A., . . . Boschloo, G. (2017). High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Advanced Materials, 29(17), 1606398.
  • Akin, S., Altintas, Y., Mutlugun, E., & Sonmezoglu, S. (2019). Cesium-lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency. Nano Energy, 60, 557-566.
  • Akin, S., Liu, Y., Dar, M. I., Zakeeruddin, S. M., Gratzel, M., Turan, S., & Sonmezoglu, S. (2018). Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. Journal of Materials Chemistry A, 6(41), 20327-20337.
  • Akin, S., Ulusu, Y., Waller, H., Lakey, J. H., & Sonmezoglu, S. (2018). Insight into interface engineering at TiO2/dye through molecularly functionalized Caf1 biopolymer. Acs Sustainable Chemistry & Engineering, 6(2), 1825-1836.
  • Ameen, S., Rub, M. A., Kosa, S. A., Alamry, K. A., Akhtar, M. S., Shin, H. S., . . . Nazeeruddin, M. K. (2016). Perovskite solar cells: Influence of hole transporting materials on power conversion efficiency. Chemsuschem, 9(1), 10-27.
  • Arora, N., Dar, M. I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S. M., & Gratzel, M. (2017). Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358(6364), 768-771.
  • Bi, D. Q., Xu, B., Gao, P., Sun, L. C., Graetzel, M., & Hagfeldt, A. (2016). Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy, 23, 138-144.
  • Cao, J., Yin, J., Yuan, S. F., Zhao, Y., Li, J., & Zheng, N. F. (2015). Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale, 7(21), 9443-9447.
  • Chen, J. Z., & Park, N. G. (2018). Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. Journal of Physical Chemistry C, 122(25), 14039-14063.
  • Hoque, M. N. F., Islam, N., Li, Z., Ren, G. F., Zhu, K., & Fan, Z. Y. (2016). Ionic and optical properties of methylammonium lead iodide perovskite across the tetragonal-cubic structural phase transition. Chemsuschem, 9(18), 2692-2698.
  • Huang, L. B., Su, P. Y., Liu, J. M., Huang, J. F., Chen, Y. F., Qin, S., . . . Su, C. Y. (2018). Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability. Journal of Power Sources, 378, 483-490.
  • Huang, X., Bi, W. T., Jia, P. C., Tang, Y., Lou, Z. D., Hu, Y. F., . . . Teng, F. (2019). Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Organic Electronics, 67, 101-108.
  • Javaid, S., Myung, C. W., Pourasad, S., Rakshit, B., Kim, K. S., & Lee, G. (2018). A highly hydrophobic fluorographene-based system as an interlayer for electron transport in organic-inorganic perovskite solar cells. Journal of Materials Chemistry A, 6(38), 18635-18640.
  • Jeon, N. J., Na, H., Jung, E. H., Yang, T. Y., Lee, Y. G., Kim, G., . . . Seo, J. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3(8), 682-689.
  • Kim, H.-S., Seo, J.-Y., Akin, S., Simon, E., Fleischer, M., Zakeeruddin, S. M., . . . Hagfeldt, A. (2019). Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics. Nano Energy, 61, 126-131.
  • Lai, H., Li, X., Li, S. P., Chen, Y., Sun, B. Y., Jiang, Q. H., & Yang, J. Y. (2019). Enhancement of photovoltaic performance and moisture stability of perovskite solar cells by modification of tin phthalocyanine (SnPc). Electrochimica Acta, 296, 799-805.
  • Ma, Y. C., Hangoma, P. M., Park, W. I., Lim, J. H., Jung, Y. K., Jeong, J. H., . . . Kim, K. H. (2019). Controlled crystal facet of MAPbI3 perovskite for highly efficient and stable solar cell via nucleation modulation. Nanoscale, 11(1), 170-177.
  • Matsui, T., Petrikyte, I., Malinauskas, T., Domanski, K., Daskeviciene, M., Steponaitis, M., . . . Saliba, M. (2016). Additive-free transparent triarylamine-based polymeric hole-transport materials for stable perovskite solar cells. Chemsuschem, 9(18), 2567-2571.
  • Mei, A. Y., Li, X., Liu, L. F., Ku, Z. L., Liu, T. F., Rong, Y. G., . . . Han, H. W. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295-298.
  • National Renewable Energy Laboratory (NREL). (2019). Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
  • Pazos-Outon, L. M., Xiao, T. P., & Yablonovitch, E. (2018). Fundamental efficiency limit of lead iodide perovskite solar cells. Journal of Physical Chemistry Letters, 9(7), 1703-1711.
  • Qiu, W., Bastos, J. P., Dasgupta, S., Merckx, T., Cardinaletti, I., Jenart, M. V. C., . . . Cheyns, D. (2017). Highly efficient perovskite solar cells with crosslinked PCBM interlayers. Journal of Materials Chemistry A, 5(6), 2466-2472.
  • Quarti, C., Mosconi, E., Ball, J. M., D'Innocenzo, V., Tao, C., Pathak, S., . . . De Angelis, F. (2016). Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy & Environmental Science, 9(1), 155-163.
  • Rong, Y. G., Liu, L. F., Mei, A. Y., Li, X., & Han, H. W. (2015). Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 5(20).
  • Seo, J.-Y., Kim, H.-S., Akin, S., Stojanovic, M., Simon, E., Fleischer, M., . . . Grätzel, M. (2018). Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy & Environmental Science, 11(10), 2985-2992.
  • Sherkar, T. S., Momblona, C., Gil-Escrig, L., Avila, J., Sessolo, M., Bolink, H. J., & Koster, L. J. A. (2017). Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. Acs Energy Letters, 2(5), 1214-1222.
  • Tress, W., Yavari, M., Domanski, K., Yadav, P., Niesen, B., Baena, J. P. C., . . . Graetzel, M. (2018). Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells (vol 11, pg 151, 2018). Energy & Environmental Science, 11(3), 715-715.
  • Vidal, S., Izquierdo, M., Filippone, S., Fernandez, I., Akin, S., Seo, J. Y., . . . Martin, N. (2019). Site-selective synthesis of -[70]PCBM-like fullerenes: Efficient application in perovskite solar cells. Chemistry-A European Journal, 25(13), 3224-3228.
  • Wu, S. H., Chen, R., Zhang, S. S., Babu, B. H., Yue, Y. F., Zhu, H. M., . . . Chen, W. (2019). A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nature Communications, 10, 1161.
  • Xiang, W. C., Wang, Z. W., Kubicki, D. J., Tress, W., Luo, J. S., Prochowicz, D., . . . Hagfeldt, A. (2019). Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule, 3(1), 205-214.
  • Yang, W. S., Park, B. W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., . . . Seok, S. I. (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356(6345), 1376-1379.
  • Zhang, J. B., Xu, B., Yang, L., Mingorance, A., Ruan, C. Q., Hua, Y., . . . Johansson, E. M. J. (2017). Incorporation of counter ions in organic molecules: New strategy in developing dopant-free hole transport materials for efficient mixed-ion perovskite solar cells. Advanced Energy Materials, 7(14), 1602736.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Seçkin Akın 0000-0001-9852-7246

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Akın, S. (2019). Yüksek Verimli ve Uzun Dönem Kararlı Perovskit Güneş Hücrelerinin Üretimi için Perovskit/Spiro-OMeTAD Arayüzeyinin Thiol Molekülleri ile Modifikasyonu. Avrupa Bilim Ve Teknoloji Dergisi(17), 727-735. https://doi.org/10.31590/ejosat.640344