Research Article
BibTex RIS Cite

Spektroscopic, Geometric, Termodynamic and Electronic Analysis with DFT(B3LYP/B3PW91)/HF of 3-Phenyl-5-(4-pyridyl)-1,2,4-triazole Molecule

Year 2019, , 933 - 943, 31.12.2019
https://doi.org/10.31590/ejosat.643080

Abstract

The molecular geometric optimization of 3-Phenyl-5-(4-pyridyl)-1,2,4-triazole compound was obtained using DFT(B3LYP, B3PW91)/ HF methods at the 6-311G(d,p) and 3-21G basis sets. Thus, the most stable geometric conformer of the compound was found by various methods and sets. The experimental spectral investigations were performed using FT-IR values and 1H/13C-NMR chemical shifts. Geometric structure analyses (bond angles, bond lengths), Proton/Carbon NMR chemical shifts, thermodynamic parameters, HOMO-LUMO analyses, electronic properties, mulliken charges, vibrational wavenumbers, dipole moment, total energy of the title molecule were calculated using"Gaussian 09W"software package. The results were improved at the GaussView5.0 program. Computation IR data was determined at the Veda4f program and these harmonic vibrational frequencies were scaled with definite factor. Experimental data obtained from the literature. The experimental spectral values were compared with computed IR data. Proton Nuclear Magnetic Resonance (1H-NMR) and Carbon-13 Nuclear magnetic Resonance (13C-NMR) spectral values was calculated in gas phase and in DMSO solvent according to GIAO method. These values were compared with experimental proton/ carbon NMR data and regression analysis were performed according to the results. Also, the theoretical results obtained with different methods and functional were compared with each other. Furthermore, parameters such as chemical hardness (η), electronegativity (χ), ionization potential (I), chemical softness (σ), electron affinity (A) were determined with HOMO-LUMO energies calculations. The molecular surfaces such as the electron density, the electron spin potential (ESP), molecular electrostatic potential (MEP), the total density and contour maps were designated. Thus, all theoretical parameters of molecule were calculated with different methods, functionals and sets. In the result, these data were compared and the most appropriate method and set were found.

References

  • Bahçeci, Ş., Yüksek, H., Serdar, M. (2005). Reactions of amidines with some carboxylic acid hydrazides. Indian Journal of Chemistry, Volum 44B, pp 568-572.
  • Barton, D., Ollis., W.D. (1979). Comprehensive Organic Chemistry, vol. 2. (Oxford:Pergamon).
  • Becke, A.D. (1988). Density-functional exchange-energy approximation with correctasymptotic behavior. Physical review A: General physics, 38(6), 3098-3100.
  • Becke, A.D. (1993). Density‐functional thermochemistry III. The role of exact Exchange. The Journal of Chemical Physics, 98, 372-377.
  • Brown, E.J. & Polya, J.B. (1962). J.Chem. Soc, 5149.
  • Buzdar, A.U. (2002). Anastrozole (Arimidex™) in clinical practice versus the old ‘gold standard’. tamoxifen Expert Rev. anticancer Ther., 2 pp. 623-629.
  • Casaszar, J., Morvay, J., Herczeg, O. (1985). Acta Phys.Chem., 31, 717-722.
  • Cohn, M.A., Morris., D.D., Juan, D. (1992). Effects of estazolam and flurazepam on cardiopulmonary function in patients with chronic obstructive pulmonary disease Drug Saf, 7 pp, 152-158.
  • Cozzi, P.G. (2004). Chem. Soc. Rev. 33 (7), 410-421.
  • Dennington, R., Keith, T., Millam, J. (2009). GaussView. Version 5. Semichem Inc. Shawnee Mission KS.
  • Fletcher, R.A., Gilley, A., Sankhla, N., Davis, T.D. (2010). Triazoles as plant growth regulators and stress protectants, Hortic. Rev., 24 pp, 55-138.
  • Frisch, M.J., Trucks, G.W., Schlegel, HB., Scuseria, GE., Robb, MA., Mennucci, B., Petersson, GA., Nakatsuji, H., Caricato, M., Li, X. et al. (2009). Gaussian 09. Revision C.01. Gaussian. Inc. Wallingford. CT.
  • Graci, J.D., Cameron, C.E. (2002). Quasispecies. error catastrophe and the antiviral activity of ribavirin Virology, 298, pp. 175-180.
  • Gupta, K., Sutar, A.K., (2008). Coord.Chem. Rev., 252 (12), 1420-1450.
  • Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., Arakawa, H., Kasuga, K. (2003). J. Mol Catal A Chem., 195 (1), 95-100.
  • Hong, Z., Cameron C.E. (2002). Pleiotropic mechanisms of ribavirin antiviral activities Progress in Drug Research. Springer, pp. 41-69.
  • Ingold, C.K.(1969). Structure and Mechanism in Organic Chemistry, 2nd Edition.
  • Jamróz, M.H. (2004). Vibrational Energy Distribution Analysis. VEDA 4 program, Warsaw.
  • Jia, Y., Li, J. (2014). Chem. Rev., 115 (3), 1597-1621.
  • Kanamitsu, S.-i., Ito, K., Green, C.E., Tyson, C.A., Shimada, N., Sugiyama, Y. (2000). Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4 Pharm. Res., 17, pp. 419-426.
  • Karunakaran, V., Balachandran, V. (2012). Spectrochim. Acta A, 98, 229–239.
  • Krzysztof, S., Tomasz, T., Jolanta, R., Kazimierz, P., Martyna, K. (2008). Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 43, 404-419.
  • Kotan, G., Yüksek, H. (2016). Theoretical and Spectroscopic Studies of (E)-3-Benzyl-4-((4-Isopropylbenzylidene)-Amino)-1-(Morpholinomethyl)-1H-1.2.4-triazol-5(4H)-one Molecule, JOTCSA, 3(3), 381-392.
  • Layer, R.W. (1963). Chem. Rev. 63, 489-510.
  • Lee, C., Yang, W., Parr, R.G., (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review, 37, 785-789.
  • Lobo, B.L., Greene, W.L. (1997). Zolpidem: distinct from triazolam Ann. Pharmacother, 31 pp. 625-632.
  • Mari, S.K., Bantwal, S.H., Nalilu, S.K. (2008). Eur. J. Med. Chem. 43, 309-314.S.
  • Merrick, J.P., Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry, 111(45), 11683-11700.
  • Patel, R.V., Park. S.W. (2014). Eur. J. Med. Chem. 71, 24–30.
  • Perdew, J. P. (1986a). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33, 8822. (b) Perdew, J.P. (1986b). Physical Review B, 34, 7406.
  • Perdew, J.P. and Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244.
  • Pokharia, M., Yadav, S.K., Mishra, H., Pandey, N., Tilak, R., Pokharia, S. (2017). J. Mol.Struct., 1144, 324-337.
  • Postovskii, I.Y. & Vereshchagina N.N. (1954). Z. Obshch Khim, 229, 2139.
  • Prakash, A., Adhikari, D. (2011). Application of Schiff bases and their metal complexes-A review. Int. J. Chem. Tech. Res. 3 (4), 1891-1896.
  • Rockstroh, J.K., Mudar, M., Lichterfeld, M., Nischalke, H.D., Klausen, G., Gölz, J., Dupke, S., Notheis, G., Stein, L., Mauss, S. (2002). Pilot study of interferon alpha high-dose induction therapy in combination with ribavirin for chronic hepatitis C in HIV-co-infected patients AIDS, 16, pp. 2083-2085.
  • Sheikhshoaie, I., Sharif, M.A. (2006). Acta Crystallogr. E 62, 3563-3565.
  • Suvitha, A., Periandy, S., Boomadevi, S., Govindarajan, M. (2014). Spectrochim. Acta A, 117, 216–224.
  • Tozkoparan, B., Küpeli, E.,Yesilada, E., Ertan, M. (2007). Preparation of 5-aryl-3-alkylthio-l,2,4-triazoles and corresponding sulfones with antiinflammatorye analgesic activity. Bioorg Med Chem., 15, 1808-1814.
  • Wellington, K., Faulds, D.M. (2002). Anastrozole Drugs., 62 pp, 2483-2490.
  • Wolinski, K., .Hilton, J.F., Pulay, P.J. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 512.
  • Vogel, G.W., Morris, D. (1992). The effects of estazolam on sleep performance and memory: a long-term sleep laboratory study of elderly insomniacs. J. Clin. Pharmacol, 32 pp, 647-651.
  • Yüksek, H., Gursoy-Kol, Ö., Kemer, G., Ocak, Z., Anıl, B. (2011). Synthesis and in-vitro antioxidant evaluation of some novel 4-(4-substituted)benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones. Indian J. Heterocy. Chemistry, 20, 325-330.
  • Yüksek, H., Kotan, G., Medetalibeyoğlu, H., Gürbüz, A., Alkan M. (2017). B3LYP ve HF Temel Setleri Kullanılarak Bazı 3-Alkil-4-(2-asetoksi-3-metoksibenzilidenamino)-4,5-dihidro-1H-1.2.4-triazol-5-on Bileşiklerinin Deneysel ve Teorik Özelliklerinin İncelenmesi. CBÜ Fen Bil. Dergi, Cilt 13, Sayı 1, 193-204.

3-Fenil-5-(4-pridil)-1,2,4-triazol Molekülünün DFT(B3LYP/B3PW91)/HF ile Spektroskopik, Geometrik,Termodinamik ve Elektronik Analizi

Year 2019, , 933 - 943, 31.12.2019
https://doi.org/10.31590/ejosat.643080

Abstract

3-Fenil-5-(4-pridil)-1,2,4-triazol
bileşiğinin moleküler geometrik optimizasyonu 6-311G(d,p) ve 3-21G temel
setinde DFT(B3LYP,
B3PW91)/
HF metodları  kullanılarak elde
edilmiştir. Böylece, bileşiğin en kararlı geometrik şekli çeşitli metod ve
setlerle  bulunmuştur. Deneysel spektral
incelenmeler FT-IR değerleri ve 1H/ 13C-NMR kimyasal
kaymaları kullanılarak gerçekleştirilmiştir. Geometrik yapı analizleri (bağ açıları,
bağ uzunlukları), Proton/ Karbon NMR kimyasal kaymaları, termodinamik
parametreler, HOMO-LUMO analizleri, elektronik özellikler, mulliken yükleri,
titreşimsel dalgalanmalar, dipol momenti, başlıca molekülünün toplam enerjisi
"Gaussian 09W" paket programı  kullanılarak hesaplanmıştır.  Sonuçlar, 
GaussView5.0 programında 
değerlendirilmiştir.  Hesaplamalı
IR verileri Veda4f programında belirlenmiş ve bu hormonik titreşim frekansları
belirli faktörler ile ölçeklendirilmiştir. Deneysel değerler literatürden
alınmıştır. Deneysel spektral değerler hesaplanan IR verileri ile
karşılaştırılmıştır. Proton Nükleer Manyetik Rezonans (1H-NMR) ve
Karbon-13 Nükleer Manyetik Rezonans (13C-NMR) spektral değerleri,
gaz fazında ve DMSO çözücüsünde GIAO yöntemine göre hesaplanmıştır. Bu değerler
deneysel proton / karbon nmr verileriyle karşılaştırılmış ve sonuçlara göre
regresyon analizi yapılmıştır. Ayrıca farklı yöntemlerle elde edilen ve
fonksiyonel olan teorik sonuçlar birbiriyle karşılaştırılmıştır. Bundan başka,
HOMO-LUMO enerji hesaplamaları ile kimyasal sertlik (η), elektronegatiflik (χ),
iyonlaşma potansiyeli (I), kimyasal yumuşaklık (σ), elektron ilgisi (A) gibi
parametreler belirlenmiştir. Elektron yoğunluğu moleküler yüzeyler, elektron
spin potansiyeli (ESP), moleküler elektrostatik potansiyel (MEP), toplam
yoğunluk ve kontur haritaları belirlenmiştir. Böylece farklı metodlar,
fonksiyonlar ve setler ile molekülün tüm teorik parametreleri hesaplanmıştır.
Sonuçta bu veriler karşılaştırılmış ve en uygun yöntem ve set bulunmuştur.

References

  • Bahçeci, Ş., Yüksek, H., Serdar, M. (2005). Reactions of amidines with some carboxylic acid hydrazides. Indian Journal of Chemistry, Volum 44B, pp 568-572.
  • Barton, D., Ollis., W.D. (1979). Comprehensive Organic Chemistry, vol. 2. (Oxford:Pergamon).
  • Becke, A.D. (1988). Density-functional exchange-energy approximation with correctasymptotic behavior. Physical review A: General physics, 38(6), 3098-3100.
  • Becke, A.D. (1993). Density‐functional thermochemistry III. The role of exact Exchange. The Journal of Chemical Physics, 98, 372-377.
  • Brown, E.J. & Polya, J.B. (1962). J.Chem. Soc, 5149.
  • Buzdar, A.U. (2002). Anastrozole (Arimidex™) in clinical practice versus the old ‘gold standard’. tamoxifen Expert Rev. anticancer Ther., 2 pp. 623-629.
  • Casaszar, J., Morvay, J., Herczeg, O. (1985). Acta Phys.Chem., 31, 717-722.
  • Cohn, M.A., Morris., D.D., Juan, D. (1992). Effects of estazolam and flurazepam on cardiopulmonary function in patients with chronic obstructive pulmonary disease Drug Saf, 7 pp, 152-158.
  • Cozzi, P.G. (2004). Chem. Soc. Rev. 33 (7), 410-421.
  • Dennington, R., Keith, T., Millam, J. (2009). GaussView. Version 5. Semichem Inc. Shawnee Mission KS.
  • Fletcher, R.A., Gilley, A., Sankhla, N., Davis, T.D. (2010). Triazoles as plant growth regulators and stress protectants, Hortic. Rev., 24 pp, 55-138.
  • Frisch, M.J., Trucks, G.W., Schlegel, HB., Scuseria, GE., Robb, MA., Mennucci, B., Petersson, GA., Nakatsuji, H., Caricato, M., Li, X. et al. (2009). Gaussian 09. Revision C.01. Gaussian. Inc. Wallingford. CT.
  • Graci, J.D., Cameron, C.E. (2002). Quasispecies. error catastrophe and the antiviral activity of ribavirin Virology, 298, pp. 175-180.
  • Gupta, K., Sutar, A.K., (2008). Coord.Chem. Rev., 252 (12), 1420-1450.
  • Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., Arakawa, H., Kasuga, K. (2003). J. Mol Catal A Chem., 195 (1), 95-100.
  • Hong, Z., Cameron C.E. (2002). Pleiotropic mechanisms of ribavirin antiviral activities Progress in Drug Research. Springer, pp. 41-69.
  • Ingold, C.K.(1969). Structure and Mechanism in Organic Chemistry, 2nd Edition.
  • Jamróz, M.H. (2004). Vibrational Energy Distribution Analysis. VEDA 4 program, Warsaw.
  • Jia, Y., Li, J. (2014). Chem. Rev., 115 (3), 1597-1621.
  • Kanamitsu, S.-i., Ito, K., Green, C.E., Tyson, C.A., Shimada, N., Sugiyama, Y. (2000). Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4 Pharm. Res., 17, pp. 419-426.
  • Karunakaran, V., Balachandran, V. (2012). Spectrochim. Acta A, 98, 229–239.
  • Krzysztof, S., Tomasz, T., Jolanta, R., Kazimierz, P., Martyna, K. (2008). Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 43, 404-419.
  • Kotan, G., Yüksek, H. (2016). Theoretical and Spectroscopic Studies of (E)-3-Benzyl-4-((4-Isopropylbenzylidene)-Amino)-1-(Morpholinomethyl)-1H-1.2.4-triazol-5(4H)-one Molecule, JOTCSA, 3(3), 381-392.
  • Layer, R.W. (1963). Chem. Rev. 63, 489-510.
  • Lee, C., Yang, W., Parr, R.G., (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review, 37, 785-789.
  • Lobo, B.L., Greene, W.L. (1997). Zolpidem: distinct from triazolam Ann. Pharmacother, 31 pp. 625-632.
  • Mari, S.K., Bantwal, S.H., Nalilu, S.K. (2008). Eur. J. Med. Chem. 43, 309-314.S.
  • Merrick, J.P., Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry, 111(45), 11683-11700.
  • Patel, R.V., Park. S.W. (2014). Eur. J. Med. Chem. 71, 24–30.
  • Perdew, J. P. (1986a). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33, 8822. (b) Perdew, J.P. (1986b). Physical Review B, 34, 7406.
  • Perdew, J.P. and Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244.
  • Pokharia, M., Yadav, S.K., Mishra, H., Pandey, N., Tilak, R., Pokharia, S. (2017). J. Mol.Struct., 1144, 324-337.
  • Postovskii, I.Y. & Vereshchagina N.N. (1954). Z. Obshch Khim, 229, 2139.
  • Prakash, A., Adhikari, D. (2011). Application of Schiff bases and their metal complexes-A review. Int. J. Chem. Tech. Res. 3 (4), 1891-1896.
  • Rockstroh, J.K., Mudar, M., Lichterfeld, M., Nischalke, H.D., Klausen, G., Gölz, J., Dupke, S., Notheis, G., Stein, L., Mauss, S. (2002). Pilot study of interferon alpha high-dose induction therapy in combination with ribavirin for chronic hepatitis C in HIV-co-infected patients AIDS, 16, pp. 2083-2085.
  • Sheikhshoaie, I., Sharif, M.A. (2006). Acta Crystallogr. E 62, 3563-3565.
  • Suvitha, A., Periandy, S., Boomadevi, S., Govindarajan, M. (2014). Spectrochim. Acta A, 117, 216–224.
  • Tozkoparan, B., Küpeli, E.,Yesilada, E., Ertan, M. (2007). Preparation of 5-aryl-3-alkylthio-l,2,4-triazoles and corresponding sulfones with antiinflammatorye analgesic activity. Bioorg Med Chem., 15, 1808-1814.
  • Wellington, K., Faulds, D.M. (2002). Anastrozole Drugs., 62 pp, 2483-2490.
  • Wolinski, K., .Hilton, J.F., Pulay, P.J. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 512.
  • Vogel, G.W., Morris, D. (1992). The effects of estazolam on sleep performance and memory: a long-term sleep laboratory study of elderly insomniacs. J. Clin. Pharmacol, 32 pp, 647-651.
  • Yüksek, H., Gursoy-Kol, Ö., Kemer, G., Ocak, Z., Anıl, B. (2011). Synthesis and in-vitro antioxidant evaluation of some novel 4-(4-substituted)benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones. Indian J. Heterocy. Chemistry, 20, 325-330.
  • Yüksek, H., Kotan, G., Medetalibeyoğlu, H., Gürbüz, A., Alkan M. (2017). B3LYP ve HF Temel Setleri Kullanılarak Bazı 3-Alkil-4-(2-asetoksi-3-metoksibenzilidenamino)-4,5-dihidro-1H-1.2.4-triazol-5-on Bileşiklerinin Deneysel ve Teorik Özelliklerinin İncelenmesi. CBÜ Fen Bil. Dergi, Cilt 13, Sayı 1, 193-204.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gül Kotan 0000-0002-4507-9029

Haydar Yüksek This is me 0000-0003-1289-1800

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Kotan, G., & Yüksek, H. (2019). 3-Fenil-5-(4-pridil)-1,2,4-triazol Molekülünün DFT(B3LYP/B3PW91)/HF ile Spektroskopik, Geometrik,Termodinamik ve Elektronik Analizi. Avrupa Bilim Ve Teknoloji Dergisi(17), 933-943. https://doi.org/10.31590/ejosat.643080