Research Article
BibTex RIS Cite

Malachite Green Dye Removal from Aqueous Solutions Using Invader Centaurea Solstitialis Plant and Optimization by Response Surface Method: Kinetic, Isotherm, And Thermodynamic Study

Year 2019, , 755 - 768, 31.12.2019
https://doi.org/10.31590/ejosat.643238

Abstract

Invasive plants
reduce the yield by inhibiting the development of agricultural products. In
this study, invasive (CS) plant which is agricultural waste was used as
adsorbent for removal of Malachite Green (MG) from aqueous solution. The
adsorbent - adsorbate relationship was examined by the spectrophotometric
method and Fourier transform infrared (FTIR). The surface morphology was
determined by scanning electron microscope (SEM). CS surface area was measured
by Brunauer, the Emmett and Teller (BET) analysis. The experiments were
designed and modeled by RSM. The correlation factor of the developed model was
0.984. The capacity of 90.816 mg.g-1 was achieved when MG solution
with concentration of 312.5 mg.L-1 was adsorbed onto 0.325 g CS for
75 min at a pH of 7.5. In this work the shaking velocity and the adsorbent size
were 150 rpm and 30 mesh respectively. Langmuir, Freundlich, Temkin, and
Dubinin-Radushkevich (D-R) isotherms were studied. Temkin isotherm had the
highest R2 of 0.997. The kinetics models of the adsorption process
were investigated and fitted with pseudo-second-order kinetic (R2 =
0.9982). The intraparticle diffusion model reflected the involved two steps;
the first comprehended the boundary diffusion layer, while the second
introduced the intraparticle diffusion effects. The adsorption was found to be
endothermic with a Gibbs free energy of -4.47 KJ.mol-1. It was noted
that the adsorption process was irreversible with a max percentage of
desorption process of 2.16%. Column experiments were conducted to realize the
adsorption process. The efficiency of the column reached 99.5% after 40 min and
stilled constant. As a result, CS has shown a potential for MG removal
from aqueous solution.

References

  • Abd-El-Kareem, M., & Taha, H. (2012). Decolorization of malachite green and methylene blue by two microalgal species. Int J Chem Environ, 3, 297-302.
  • Aharoni, C., & Ungarish, M. (1977). Kinetics of activated chemisorption. Part 2. Theoretical models. J. Chem. Soc. Faraday Trans., 73, 456–464.
  • Aliyan, H., Fazaeli, R., & Jalilian, R. (2013). Fe3O4 at mesoporous SBA-15: a magnetically recoverable catalyst for photodegradation of. Appl Surf Sci, 276, 147–153. doi:10.1016/j.apsusc.2013.03.049
  • Bagheri, A. R., Arabi, M., Ghaedi, M., Ostovan, A., Wang, X., Li, J., & Chen, L. (2019). Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 195, 390-400.
  • Bai, C., Xiao, W., Feng, D., & al, e. (2013). Efficient decolorization of Malachite Green in the Fenton reaction catalyzed by [Fe (III)-salen] Cl complex. Chem Eng J, 215-216, 227-234. doi:10.1016/j.cej.2012.09.124
  • Bapat, S., & Jaspal, D. (2016). Parthenium hysterophorus: novel adsorbent for the removal of heavy metals and dyes. Glob. J. Environ. Sci. Manag., 2, 135-144. doi:http://dx.doi.org/10.7508/gjesm.2016.02.004.
  • Belhouchat, N., Zaghouane-Boudiaf, H., & Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl. Clay Sci, 135, 9-15.
  • Bezerraa, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Ame, L., & Escaleira, l. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.
  • Bojinova, A., & Dushkin, C. (2011). Photodegradation of malachite green in water solutions by means of thin films of TiO2/WO3 under visible light. React Kinet Mech Catal, 103, 239–250. Doi: 10.1007/s11144-011-0295-2
  • Bouaziz, F., Koubaa, M., Kallel, F., Ghorbel, R. E., & Chaabouni, S. E. (2017). Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms. International Journal of Biological Macromolecules, 105, 56-65.
  • Chen, F., Ma, W., He, J., & Zhao, J. (2002). Fenton degradation of malachite green catalyzed by aromatic additives. J Phys Chem A, 106, 9485–9490. Doi: 10.1021/jp0144350
  • Chieng, H., Lim, L., & Priyantha, N. (2015). Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environ Technol, 36, 86-97.
  • Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). MWH’s Water Treatment Principles and Design (Third Edition Ed.). New Jersey: John Wiley & Sons, Inc.
  • Dabrowski, A. (2001). Adsorption—from theory to practice. Adv. Colloid Interface Sci., 93, 135–224.
  • Dahri, M. K., Kooh, M. R., & Lim, L. B. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2, 1434-1444.
  • Freundlich, H. (1906). Over the adsorption in solution. J. Phys.Chem., 57, 385-470.
  • Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. J. Environ. Manag. 231, 241-248.
  • Gunay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J.Hazard. Mater, 146, 362–371.
  • Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. (2016). Application of potato (Solanumtuberosum) plantwastes for the removal of methylene blue and malachite green dye form aqueous solution. Arabian Journal of Chemistry (9), 707-716. Retrieved from https://doi.org/10.1016/j.arabjc.2011.07.021
  • Gupta, V. (2009). Application of low-cost adsorbents for dye removal- A review. J. Environ. Manag. 90, 2313-2342.
  • Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ. Eng. Res., 1(20), 1-18.
  • Hasnat, M., Siddiquey, I., & Saiful, I. (2003). Photodegradation of malachite green in the aqueous medium. Indian J Chem Sect A, 42, 1865–1867.
  • Khamparia, S., & Jaspal, D. K. (2017). Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal. J. Environ. Manag. 197, 498-506.
  • Khan, T., Sharma, S., & Ali, I. (2011). Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium. J. Toxicol. Env. Health Sci., 3, 286-297.
  • Khattri, S., & Singh, M. (2009). Removal of malachite green from dye wastewater using neem sawdust by adsorption. J Hazard Mater (167), 1089-1094. Retrieved from https://doi.org/10.1016/j.jhazmat.2009.01.101
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. . Am. Chem. Soc., 40, 1361-1403.
  • Levin, L., Papinutti, L., & Forchiassin, F. (2004). Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol, 94, 169–176. doi:10.1016/j.biortech.2003.12.002
  • Man, L., Kumar, P., Teng, T., & Wasewar, K. (2012). Design of experiments for malachite green dye removal from wastewater using thermolysis—coagulation–flocculation. Desalin Water Treat, 40, 260-271. doi:10.1080/19443994.2012.671257
  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. (2009). Adsorptive removal of hazardous anionic dye ‘‘Congo Red’’ from wastewater using waste materials and recovery by desorption. J. Colloid Interface, 340, 16-26. doi:10.1016/j.jcis.2009.08.019
  • Modirshahla, N., & Behnajady, M. (2006). hotooxidative degradation of malachite green (MG) by UV/H2O2: influence of operational parameters and kinetic modeling. Dyes Pigments, 70, 54-59. doi:10.1016/j.dyepig.2005.04.012
  • Pal, P., & Pal, A. (2017). Surfactant-modified chitosan beads for cadmium ion adsorption. Int. J.Biol. Macromol. 104, 1548-1555.
  • Pirsaheb, M., Shahmoradi, B., Khosravi, T., & al, e. (2015). Solar degradation of malachite green using nickel-doped TiO2 nanocatalysts. Desalin Water Treat, 57, 9881–9888. doi:10.1080/19443994.2015.1033764
  • Raval, N., Shah, P., & Shah, N. (2016). Nanoparticles loaded biopolymer as effective adsorbent for adsorptive removal of malachite green from aqueous solution. Water Conserv Sci Eng, 1, 69-81. Doi: 10.1007/s41101-016-0004-0
  • Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostructure Chem., 3(55).
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77, 247-255. doi:http://dx.doi.org/10.1016/S0960-8524 (00)00080-8.
  • Roosta, M., Ghaedi, M., Shokri, N., Daneshfar, A., Sahraei, R., & Asghari, A. (2014). Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 118, 55-65.
  • Sartape, S. A., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229-S3238.
  • Salamata, S., Hadavifar, M., & Rezaei, H. (2019). Preparation of nanochitosan-STP from shrimp shell and its application in removing of malachite green from aqueous solutions. Journal of Environmental Chemical Engineering, 7. doi:https://doi.org/10.1016/j.jece.2019.103328
  • Saleh, M., Yalvaç, M., & Arslan, H. (2019). Optimization of Remazol Brilliant Blue R Adsorption onto Xanthium Italicum using the Response Surface Method. Karbala International Journal of Modern Science, 5(1). doi:10.33640/2405-609X.1017
  • Salleh, M. A., Mahmoud, D. K., Karim, W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination (280), 1-13. Retrieved from http://dx.doi.org/10.1016/j.desal.2011.07.019
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M., Mosquera, E., & Gupta, V. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029-1033. doi:10.1016/j.molliq.2016.06.074
  • Sartepe, A. S., Mandhare, A. M., Jadjav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry (10), 3229-3238. Retrieved from https://doi.org/10.1016/j.arabjc.2013.12.019
  • Saxena, S., & Raja, A. (2014). Natural Dyes: Sources, Chemistry, Application and Sustainability Issues. In Muthu S. (Eds) Roadmap to Sustainable Textiles and Clothing (pp. 37-80). Singapore: Textile Science and Clothing Technology. Springer.
  • Tempkin, M., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim, USSR 12, 327–356.
  • Tobías, S., Ignacio, D., Lorena, A., Gustavo, P., Matías, L., Isabela, O., Sebastian, B. (2018). Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater. J. Environ. Manag. 218, 562-568.
  • TÜİK, T. (2018). Paint Industry in Turkey and the World. Paint Istanbul & Turkcoat 2018. Istanbul. Retrieved 08 19, 2019, from http://www.turkcoat-paintistanbul.com/uploads/files/Paintistanbul_Turkcoat_2018_Preview.pdf
  • Wang, X., Zhou, Y., Jiang, Y., & Sun, C. (2008). The removal of basic dyes from aqueous solutions using agricultural by-products. J Hazard Mater, 157, 374-385.
  • Yang, J., Chen, C., Ji, H., & al, e. (2005). Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B, 109, 21900–21907. Doi: 10.1021/jp0540914
  • Zhou, X.-J., Guo, W.-Q., Yang, S.-S., & al, e. (2013). Ultrasonic-assisted ozone oxidation process of triphenylmethane dye degradation: evidence for the promotion effects of ultrasonic on malachite green decolorization and degradation mechanism. Bioresour Technol, 128, 827-830. doi:10.1016/j.biortech.2012.10.086

İstilacı Centaurea Solstitialis Bitkisi Kullanılarak Sulu Çözeltilerden Malahit Yeşil Boya Giderimi ve Tepki Yüzey Yöntemi ile Optimizasyon: Kinetik, İzoterm ve Termodinamik Çalışma

Year 2019, , 755 - 768, 31.12.2019
https://doi.org/10.31590/ejosat.643238

Abstract

İstilacı bitkiler,
tarım ürünlerinin gelişimini engelleyerek ürün verimini azaltmaktadır. Bu
çalışmada, sentetik bir boya olan Malachite Green (MG)'nin sulu çözeltiden
uzaklaştırılmasında tarımsal atık olan istilacı Centaurea Solstitialis (CS)
bitkisi adsorban olarak  kullanılmıştır.
Adsorbent - adsorbate ilişkisi, spektrofotometrik yöntem ve Fourier dönüşüm
infrared (FTIR) ile incelenmiştir. Yüzey morfolojisi taramalı elektron
mikroskobu (SEM) ile belirlenmiştir. CS yüzey alanı Brunauer, Emmett ve Teller
(BET) analizi ile ölçülmüştür. Deney tasarımı ve modellemesinde RSM kullanılmış
ve korelasyon faktörü 0,984 olarak bulunmuştur. Optimum çalışma koşulu olan
312.5 mg.L-1MG içeren çözeltiye (pH=7.5) 0.325 g CS (30 mesh)
koyularak 150 rpm’de 75 dakika çalkalanmıştır. Çalışmada CS tanecik boyutu 30
mesh ve çalkalama hızı 150 rpm sabit tutulmuştur. Optimum çalışma koşullarında
CS’nin maksimum adsorpsiyon kapasitesi 90.816 mg.g-1 bulunmuştur.
Sonuçlar Langmuir, Freundlich, Temkin ve Dubinin-Radushkevich (D-R) izotermleri
ile değerlendirilmiştir. Sonuç olarak adsorpsiyon işleminin Temkin izotermine
(0,997 R2) uyan yalancı ikinci dereceden (R2 = 0.9982)
bir kinetik reaksiyon olduğu bulunmuştur. İntrapartikül difüzyon modeli,
sırasıyla sınır difüzyon tabakası ve partikül içi difüzyon etkilerini
göstermiştir. Adsorpsiyonun -4,47 KJ.mol-1 Gibbs serbest enerjisi
ile endotermik olduğu bulunmuştur. Desorpsiyon çalışmasında maksimum %2.16’lık
bir verim elde edilmiştir. Bu sonuç CS üzerine adsorbe olan MG’nin tekrar suya
karışma ihtimalinin düşük olduğunu göstermektedir.  Daha sonra kolon çalışmalarına
geçilmiştir.  Kolonun verimliliği, 40.
dakikada % 99.5'e ulaşmış ve bundan sonra sabit kalmıştır. Sonuç olarak,
CS’nin, sulu çözeltiden MG gideriminde etkili bir adsorbent olduğu bulunmuştur.

References

  • Abd-El-Kareem, M., & Taha, H. (2012). Decolorization of malachite green and methylene blue by two microalgal species. Int J Chem Environ, 3, 297-302.
  • Aharoni, C., & Ungarish, M. (1977). Kinetics of activated chemisorption. Part 2. Theoretical models. J. Chem. Soc. Faraday Trans., 73, 456–464.
  • Aliyan, H., Fazaeli, R., & Jalilian, R. (2013). Fe3O4 at mesoporous SBA-15: a magnetically recoverable catalyst for photodegradation of. Appl Surf Sci, 276, 147–153. doi:10.1016/j.apsusc.2013.03.049
  • Bagheri, A. R., Arabi, M., Ghaedi, M., Ostovan, A., Wang, X., Li, J., & Chen, L. (2019). Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 195, 390-400.
  • Bai, C., Xiao, W., Feng, D., & al, e. (2013). Efficient decolorization of Malachite Green in the Fenton reaction catalyzed by [Fe (III)-salen] Cl complex. Chem Eng J, 215-216, 227-234. doi:10.1016/j.cej.2012.09.124
  • Bapat, S., & Jaspal, D. (2016). Parthenium hysterophorus: novel adsorbent for the removal of heavy metals and dyes. Glob. J. Environ. Sci. Manag., 2, 135-144. doi:http://dx.doi.org/10.7508/gjesm.2016.02.004.
  • Belhouchat, N., Zaghouane-Boudiaf, H., & Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl. Clay Sci, 135, 9-15.
  • Bezerraa, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Ame, L., & Escaleira, l. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.
  • Bojinova, A., & Dushkin, C. (2011). Photodegradation of malachite green in water solutions by means of thin films of TiO2/WO3 under visible light. React Kinet Mech Catal, 103, 239–250. Doi: 10.1007/s11144-011-0295-2
  • Bouaziz, F., Koubaa, M., Kallel, F., Ghorbel, R. E., & Chaabouni, S. E. (2017). Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms. International Journal of Biological Macromolecules, 105, 56-65.
  • Chen, F., Ma, W., He, J., & Zhao, J. (2002). Fenton degradation of malachite green catalyzed by aromatic additives. J Phys Chem A, 106, 9485–9490. Doi: 10.1021/jp0144350
  • Chieng, H., Lim, L., & Priyantha, N. (2015). Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environ Technol, 36, 86-97.
  • Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). MWH’s Water Treatment Principles and Design (Third Edition Ed.). New Jersey: John Wiley & Sons, Inc.
  • Dabrowski, A. (2001). Adsorption—from theory to practice. Adv. Colloid Interface Sci., 93, 135–224.
  • Dahri, M. K., Kooh, M. R., & Lim, L. B. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2, 1434-1444.
  • Freundlich, H. (1906). Over the adsorption in solution. J. Phys.Chem., 57, 385-470.
  • Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. J. Environ. Manag. 231, 241-248.
  • Gunay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J.Hazard. Mater, 146, 362–371.
  • Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. (2016). Application of potato (Solanumtuberosum) plantwastes for the removal of methylene blue and malachite green dye form aqueous solution. Arabian Journal of Chemistry (9), 707-716. Retrieved from https://doi.org/10.1016/j.arabjc.2011.07.021
  • Gupta, V. (2009). Application of low-cost adsorbents for dye removal- A review. J. Environ. Manag. 90, 2313-2342.
  • Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ. Eng. Res., 1(20), 1-18.
  • Hasnat, M., Siddiquey, I., & Saiful, I. (2003). Photodegradation of malachite green in the aqueous medium. Indian J Chem Sect A, 42, 1865–1867.
  • Khamparia, S., & Jaspal, D. K. (2017). Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal. J. Environ. Manag. 197, 498-506.
  • Khan, T., Sharma, S., & Ali, I. (2011). Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium. J. Toxicol. Env. Health Sci., 3, 286-297.
  • Khattri, S., & Singh, M. (2009). Removal of malachite green from dye wastewater using neem sawdust by adsorption. J Hazard Mater (167), 1089-1094. Retrieved from https://doi.org/10.1016/j.jhazmat.2009.01.101
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. . Am. Chem. Soc., 40, 1361-1403.
  • Levin, L., Papinutti, L., & Forchiassin, F. (2004). Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol, 94, 169–176. doi:10.1016/j.biortech.2003.12.002
  • Man, L., Kumar, P., Teng, T., & Wasewar, K. (2012). Design of experiments for malachite green dye removal from wastewater using thermolysis—coagulation–flocculation. Desalin Water Treat, 40, 260-271. doi:10.1080/19443994.2012.671257
  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. (2009). Adsorptive removal of hazardous anionic dye ‘‘Congo Red’’ from wastewater using waste materials and recovery by desorption. J. Colloid Interface, 340, 16-26. doi:10.1016/j.jcis.2009.08.019
  • Modirshahla, N., & Behnajady, M. (2006). hotooxidative degradation of malachite green (MG) by UV/H2O2: influence of operational parameters and kinetic modeling. Dyes Pigments, 70, 54-59. doi:10.1016/j.dyepig.2005.04.012
  • Pal, P., & Pal, A. (2017). Surfactant-modified chitosan beads for cadmium ion adsorption. Int. J.Biol. Macromol. 104, 1548-1555.
  • Pirsaheb, M., Shahmoradi, B., Khosravi, T., & al, e. (2015). Solar degradation of malachite green using nickel-doped TiO2 nanocatalysts. Desalin Water Treat, 57, 9881–9888. doi:10.1080/19443994.2015.1033764
  • Raval, N., Shah, P., & Shah, N. (2016). Nanoparticles loaded biopolymer as effective adsorbent for adsorptive removal of malachite green from aqueous solution. Water Conserv Sci Eng, 1, 69-81. Doi: 10.1007/s41101-016-0004-0
  • Robati, D. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostructure Chem., 3(55).
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77, 247-255. doi:http://dx.doi.org/10.1016/S0960-8524 (00)00080-8.
  • Roosta, M., Ghaedi, M., Shokri, N., Daneshfar, A., Sahraei, R., & Asghari, A. (2014). Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 118, 55-65.
  • Sartape, S. A., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229-S3238.
  • Salamata, S., Hadavifar, M., & Rezaei, H. (2019). Preparation of nanochitosan-STP from shrimp shell and its application in removing of malachite green from aqueous solutions. Journal of Environmental Chemical Engineering, 7. doi:https://doi.org/10.1016/j.jece.2019.103328
  • Saleh, M., Yalvaç, M., & Arslan, H. (2019). Optimization of Remazol Brilliant Blue R Adsorption onto Xanthium Italicum using the Response Surface Method. Karbala International Journal of Modern Science, 5(1). doi:10.33640/2405-609X.1017
  • Salleh, M. A., Mahmoud, D. K., Karim, W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination (280), 1-13. Retrieved from http://dx.doi.org/10.1016/j.desal.2011.07.019
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M., Mosquera, E., & Gupta, V. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029-1033. doi:10.1016/j.molliq.2016.06.074
  • Sartepe, A. S., Mandhare, A. M., Jadjav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry (10), 3229-3238. Retrieved from https://doi.org/10.1016/j.arabjc.2013.12.019
  • Saxena, S., & Raja, A. (2014). Natural Dyes: Sources, Chemistry, Application and Sustainability Issues. In Muthu S. (Eds) Roadmap to Sustainable Textiles and Clothing (pp. 37-80). Singapore: Textile Science and Clothing Technology. Springer.
  • Tempkin, M., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim, USSR 12, 327–356.
  • Tobías, S., Ignacio, D., Lorena, A., Gustavo, P., Matías, L., Isabela, O., Sebastian, B. (2018). Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater. J. Environ. Manag. 218, 562-568.
  • TÜİK, T. (2018). Paint Industry in Turkey and the World. Paint Istanbul & Turkcoat 2018. Istanbul. Retrieved 08 19, 2019, from http://www.turkcoat-paintistanbul.com/uploads/files/Paintistanbul_Turkcoat_2018_Preview.pdf
  • Wang, X., Zhou, Y., Jiang, Y., & Sun, C. (2008). The removal of basic dyes from aqueous solutions using agricultural by-products. J Hazard Mater, 157, 374-385.
  • Yang, J., Chen, C., Ji, H., & al, e. (2005). Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B, 109, 21900–21907. Doi: 10.1021/jp0540914
  • Zhou, X.-J., Guo, W.-Q., Yang, S.-S., & al, e. (2013). Ultrasonic-assisted ozone oxidation process of triphenylmethane dye degradation: evidence for the promotion effects of ultrasonic on malachite green decolorization and degradation mechanism. Bioresour Technol, 128, 827-830. doi:10.1016/j.biortech.2012.10.086
There are 49 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mohammed Saleh 0000-0002-3145-4457

Mutlu Yalvaç 0000-0002-1281-5712

Hüdaverdi Arslan 0000-0002-3053-6944

Melis Gün 0000-0001-7982-6013

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Saleh, M., Yalvaç, M., Arslan, H., Gün, M. (2019). Malachite Green Dye Removal from Aqueous Solutions Using Invader Centaurea Solstitialis Plant and Optimization by Response Surface Method: Kinetic, Isotherm, And Thermodynamic Study. Avrupa Bilim Ve Teknoloji Dergisi(17), 755-768. https://doi.org/10.31590/ejosat.643238

Cited By