Research Article
BibTex RIS Cite

Development of an Economical Box Setup for the Use of Electromagnetic Shielding Tests of Textile Composites

Year 2019, , 852 - 859, 31.12.2019
https://doi.org/10.31590/ejosat.646344

Abstract

In recent years, conductive textiles and composites have been widely used to weaken the power of electromagnetic interference. The functionality of these materials as electromagnetic shielding is evaluated by direct measurement of shielding effectiveness. Today; various test methods are used depending on the size of the electromagnetic shielding material and the measured frequency range. Many of these test methods are not considered functional because they require large sample sizes during measurement and are very costly. Therefore, there is still a need for the development of a practical and economical test method that can be measured using small samples. In this study; the design, construction and measurement principle of a test setup designed using a shielded box (enclosure) method is described. The fact that the boxes designed in the shielded box method does not yet have a standard reveals that this issue is still open to development and innovation. This was the motivation for designing a new test method according to the shielded box method. In order to determine the reliability of the designed box test setup, the results obtained from this setup were compared with those obtained by coaxial transmission line method based on ASTM D 4935-10. As a result of this comparison, the proposed method is promising for textile and composite structures.

References

  • Al-saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mecha-nisms of CNT/polymer composites,. Carbon, 47(7), 1738-1746.
  • Chen, L., Yin, X., Fan, X., Chen, M., Ma, X., Cheng, L., & Zhang, L. (2015). Mechanical and electromagnetic shielding properties of carbon reinforced silicon crbide matrix composites. Carbon(95), 10-19.
  • Chung, D. D. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39(2), 279-285.
  • Geetha, S., Satheesh Kumar, K. K., Rao, C. R., Vajiyan, M., & Trivedi, D. C. (2009). EMI shielding methods and materials –Areview, , 2009, 112, 2079-2086. Journal of Applied Polymer Science(112), 2079-2086.
  • Gupta, S., & Tai, N. H. (2019). Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon, 152, 159-187.
  • Han, E. G., Kim, E. A., & Oh, K. W. (2001). Electromagnetic interference shielding effec-tiveness of electroless Cu-plated PET fabrics. Synthetic Metals, 123(3), 469-476.
  • Huang, Y., Li, N., Ma, Y., Du, F., Li, F., He, X., . . . Chen, Y. (2007). interference shielding efficiency of its epoxy composites. Carbon, 45(8), 1614-1621.
  • Jagatheesan, K., Ramasamy, A., Das, A., & Basu, A. (2015). Fabrics and their composites for electromagnetic applications. Textile progress, 47(2), 87-161.
  • Jayalakshmi, C. G., Inamdar, A., Anand, A., & Kandasubramanian, B. (2019). Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. Journal of Applied Polymer Science, Article number: 47241, 136(14), 1-21.
  • Kim, M. S., Kim, H. K., Byun, S. W., Jeong, S. H., Joo, J. S., Song, K. T., . . . Lee, J. Y. (2002). PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synthetic Metals, 123(2-3), 233-239.
  • Liu, Z., Yang, Y., Wang, X. C., & Zhou, Z. (2014). Prediction model of shielding effectiveness of electromagnetic shielding fabric with rectangular hole. Progress In Electromagnetics Research C(48), 151-157. doi:10.2528/PIERC14022103
  • Lopez, A., Vojtech, L., & Neruda, M. (2013). Comparison Among Models to Estimate the Shielding Effectiveness Applied to Conductive Textiles. Advances in Electrical and Electronic Engineering,(11), 387-391.
  • Micheli, D., Vricella, A., Pastore, R., & Marchetti, M. (2014). Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon(77), 756-774.
  • Munalli, D., Dimitrakis, G., Chronopoulos, D., Greedy, S., & Long, A. (2019). Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Composites Part B: Engineering, 173(15), 1-12.
  • Neo, C. P., & Varadan, V. K. (2004). Optimization of carbon fiber composite for microwave absorber. IEEE Transactions on Electromagnetic Compatibility, 46(1), 102-106.
  • Safarova, V., Tunak, M., Truhlar, M., & Militky, J. (2016). A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Textile Research Journal, 86(1), 44-56.
  • Stefan, B., Tomasz, R., Iwona, K., Grazyna, M., Edward, R., Lech, S., . . . Katarzyna, S. (2009). extile Multi-layer Systems for Protection Against Electromagnetic Radiation. Fibres and Textiles in Eastern Europe, 2(73), 66-71.
  • Thomassin, J. M., Jerome, C., Pardoen, T., Bailly, C., Huynen, I., & Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering R Reports, 74(7), 211-232.
  • Volski, V., & Vandenbosch, G. A. (2009). Full-wave electromagnetic modeling of fabrics and composites. Composites Science and Technology, 69(2), 161-168.
  • Yang, Y., Gupta, M. C., Dubley, K. L., & Lawrence, R. W. (2005). A Comparative Study of EMI Shielding Properties of Carbon Nanofiber and Multi-Walled Carbon Nanotube Filled Polymer Composites. Journal of Nanoscience and Nanotechnology, 5(6), 927-931.

Tekstil Kompozitlerinin Elektromanyetik Kalkanlama Testlerinin Yapılmasında Kullanılmak Üzere Ekonomik Bir Kutu-Test Düzeneğinin Geliştirilmesi

Year 2019, , 852 - 859, 31.12.2019
https://doi.org/10.31590/ejosat.646344

Abstract

Son yıllarda iletken tekstil ve kompozitleri, elektromanyetik girişimlerin gücünü zayıflatmak için yaygın olarak kullanılmaya başlanmıştır. Bu malzemelerin, elektromanyetik koruyucu olarak fonksiyonellikleri, ekranlama etkinliklerinin (shielding effectiveness) doğrudan ölçümü ile değerlendirilmektedir. Günümüzde; elektromanyetik koruyucu malzemenin boyutuna ve ölçülen frekans aralığına bağlı olarak çeşitli test yöntemleri kullanılmaktadır. Bu test yöntemlerinin pek çoğu, ölçüm esnasında büyük numune boyutları gerektirmesi ve çok maliyetli olmalarından dolayı fonksiyonel olarak kabul edilmemektedir. Bu nedenle hala, küçük numuneler kullanılarak ölçüm yapabilecek, pratik ve ekonomik olan bir test yönteminin geliştirilmesine ihtiyaç duyulmaktadır. Bu çalışmada; korunmalı kafes metodu (Shielded box (enclosure) method) kullanılarak tasarlanmış bir test düzeneğinin tasarım, yapım ve ölçüm prensibi anlatılmaktadır. Korunmalı kafes metodunda tasarlanan kafeslerin halen bir standardının olmaması da, bu konunun hala gelişmeye ve yeniliklere açık olduğunu ortaya koymaktadır. Bu durum, çalışmada korunmalı kafes metoduna göre yeni bir test yöntemi tasarlanması yönündeki motivasyonu oluşturmuştur. Tasarlanan düzenekte testlerin gerçekleştirilebilmesi amacı ile numune olarak karbon elyaf ve karbon partikül katkılı epoksi kompozitler kullanılmıştır. Böylece çalışmada, farklı karışım oranlarına sahip dört adet numune ile çalışılmıştır. Tasarlanan kutu test düzeneğinin güvenilirliğinin belirlenmesi için, söz konusu düzenekten elde edilen sonuçlar, eş eksenli iletim hattı (coaxial transmission line method based on ASTM D 4935-10) yöntemi ile elde edilen sonuçlarla karşılaştırılmıştır. Eş eksenli iletim hattı kullanılarak yapılan testler ise YorkEMC laboratuarlarında gerçekleştirilmiştir. Her iki test yöntemi ile yapılan testler sonucunda, bu çalışmada tasarlanan ve üretilen kutu test düzeneğinden alınan sonuçların eş eksenli iletim hattı yönteminden elde edilen sonuçlarla neredeyse çok yakın olduğu ve aralarında belirgin bir fark olmadığı yargısına varılmıştır. Son olarak da; bu çalışmada önerilen yöntemin tekstil ve kompozit yapıların elektromanyetik koruma değerlerinin belirlenmesinde kullanılmak üzere umut verici olduğu sonucuna varılmıştır.

References

  • Al-saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mecha-nisms of CNT/polymer composites,. Carbon, 47(7), 1738-1746.
  • Chen, L., Yin, X., Fan, X., Chen, M., Ma, X., Cheng, L., & Zhang, L. (2015). Mechanical and electromagnetic shielding properties of carbon reinforced silicon crbide matrix composites. Carbon(95), 10-19.
  • Chung, D. D. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39(2), 279-285.
  • Geetha, S., Satheesh Kumar, K. K., Rao, C. R., Vajiyan, M., & Trivedi, D. C. (2009). EMI shielding methods and materials –Areview, , 2009, 112, 2079-2086. Journal of Applied Polymer Science(112), 2079-2086.
  • Gupta, S., & Tai, N. H. (2019). Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon, 152, 159-187.
  • Han, E. G., Kim, E. A., & Oh, K. W. (2001). Electromagnetic interference shielding effec-tiveness of electroless Cu-plated PET fabrics. Synthetic Metals, 123(3), 469-476.
  • Huang, Y., Li, N., Ma, Y., Du, F., Li, F., He, X., . . . Chen, Y. (2007). interference shielding efficiency of its epoxy composites. Carbon, 45(8), 1614-1621.
  • Jagatheesan, K., Ramasamy, A., Das, A., & Basu, A. (2015). Fabrics and their composites for electromagnetic applications. Textile progress, 47(2), 87-161.
  • Jayalakshmi, C. G., Inamdar, A., Anand, A., & Kandasubramanian, B. (2019). Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. Journal of Applied Polymer Science, Article number: 47241, 136(14), 1-21.
  • Kim, M. S., Kim, H. K., Byun, S. W., Jeong, S. H., Joo, J. S., Song, K. T., . . . Lee, J. Y. (2002). PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synthetic Metals, 123(2-3), 233-239.
  • Liu, Z., Yang, Y., Wang, X. C., & Zhou, Z. (2014). Prediction model of shielding effectiveness of electromagnetic shielding fabric with rectangular hole. Progress In Electromagnetics Research C(48), 151-157. doi:10.2528/PIERC14022103
  • Lopez, A., Vojtech, L., & Neruda, M. (2013). Comparison Among Models to Estimate the Shielding Effectiveness Applied to Conductive Textiles. Advances in Electrical and Electronic Engineering,(11), 387-391.
  • Micheli, D., Vricella, A., Pastore, R., & Marchetti, M. (2014). Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon(77), 756-774.
  • Munalli, D., Dimitrakis, G., Chronopoulos, D., Greedy, S., & Long, A. (2019). Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Composites Part B: Engineering, 173(15), 1-12.
  • Neo, C. P., & Varadan, V. K. (2004). Optimization of carbon fiber composite for microwave absorber. IEEE Transactions on Electromagnetic Compatibility, 46(1), 102-106.
  • Safarova, V., Tunak, M., Truhlar, M., & Militky, J. (2016). A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Textile Research Journal, 86(1), 44-56.
  • Stefan, B., Tomasz, R., Iwona, K., Grazyna, M., Edward, R., Lech, S., . . . Katarzyna, S. (2009). extile Multi-layer Systems for Protection Against Electromagnetic Radiation. Fibres and Textiles in Eastern Europe, 2(73), 66-71.
  • Thomassin, J. M., Jerome, C., Pardoen, T., Bailly, C., Huynen, I., & Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering R Reports, 74(7), 211-232.
  • Volski, V., & Vandenbosch, G. A. (2009). Full-wave electromagnetic modeling of fabrics and composites. Composites Science and Technology, 69(2), 161-168.
  • Yang, Y., Gupta, M. C., Dubley, K. L., & Lawrence, R. W. (2005). A Comparative Study of EMI Shielding Properties of Carbon Nanofiber and Multi-Walled Carbon Nanotube Filled Polymer Composites. Journal of Nanoscience and Nanotechnology, 5(6), 927-931.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Devrim Soyaslan 0000-0002-5145-8551

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Soyaslan, D. (2019). Tekstil Kompozitlerinin Elektromanyetik Kalkanlama Testlerinin Yapılmasında Kullanılmak Üzere Ekonomik Bir Kutu-Test Düzeneğinin Geliştirilmesi. Avrupa Bilim Ve Teknoloji Dergisi(17), 852-859. https://doi.org/10.31590/ejosat.646344