Research Article
BibTex RIS Cite

Fractional Factorial Design Application for the Determination of Parameters Affecting KOH and HCl Generation from Simulated Wastewater Solution by Bipolar Membrane Electrodialysis

Year 2019, , 866 - 873, 31.12.2019
https://doi.org/10.31590/ejosat.646850

Abstract

The aim of the study is to determine the significant factors influencing the generation of potassium hydroxide and hydrochloric acid from simulated potassium chloride solution by bipolar membrane electrodialysis using fractional factorial design. The membrane stack with acid, dilute (salt), and base compartments was used in the experiments. Fractional factorial design 24-1 was employed to evaluate the parameters affecting the production of base and acid. The process has been investigated as a function of four main factors namely, initial concentrations of acid and base, initial salt concentration, current density, and electrolyte concentration. Normal probability plot and Pareto charts revealed that the initial salt concentration is the most significant parameter affecting the bipolar membrane electrodialysis system performance. The results were also statistically analyzed by using the main effects plots and the ANOVA method. The significance of initial salt concentration was confirmed by both statistical findings.

References

  • Antony, J. (2014). Design of experiments for engineers and scientists: Elsevier.
  • Ata, O. N., Kanca, A., Demir, Z., & Yigit, V. (2017). Optimization of ammonia removal from aqueous solution by microwave-assisted air stripping. Water, Air, & Soil Pollution, 228(11), 448.
  • Badruzzaman, M., Oppenheimer, J., Adham, S., & Kumar, M. J. J. o. M. S. (2009). Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes. 326(2), 392-399.
  • Chang, S. H., Teng, T. T., & Ismail, N. (2011). Screening of factors influencing Cu (II) extraction by soybean oil-based organic solvents using fractional factorial design. Journal of environmental management, 92(10), 2580-2585.
  • Chérif, M., Mkacher, I., Dammak, L., Ben Salah, A., Walha, K., Nikonenko, V., . . . Grande, D. (2016). Fractional factorial design of water desalination by neutralization dialysis process: concentration, flow rate, and volume effects. Desalination and Water Treatment, 57(31), 14403-14413.
  • da Silva, R. G., Seckler, M., Rocha, S. D. F., Saturnino, D., & de Oliveira, É. D. (2017). Thermodynamic modeling of phases equilibrium in aqueous systems to recover potassium chloride from natural brines. Journal of Materials Research and Technology, 6(1), 57-64.
  • El-Taweel, T., & Haridy, S. (2014). An application of fractional factorial design in wire electrochemical turning process. The International Journal of Advanced Manufacturing Technology, 75(5-8), 1207-1218.
  • Epstein, J., Altaras, D., Feist, E., & Rosenzweig, J. (1975). The recovery of potassium chloride from Dead Sea brines by precipitation and solvent extraction. Hydrometallurgy, 1(1), 39-50.
  • Erkmen, J., & Yapici, S. (2016). A environmentally friendly process for boric acid and sodium hydroxide production from borax; bipolar membrane electrodialysis. Desalination and Water Treatment, 57(43), 20261-20269.
  • Erkmen, J., Yapıcı, S., Arzutuğ, M., Aydın, Ö., Ata, O., Öner, M. J. D., & Treatment, W. (2016). Hydrofluoric acid and sodium hydroxide production by bipolar membrane electrodialysis. 57(43), 20254-20260.
  • Fidaleo, M., Moresi, M. J. A. i. f., & research, n. (2006). Electrodialysis applications in the food industry. 51, 265-360.
  • Frilette, V. J. J. T. J. o. P. C. (1956). Preparation and characterization of bipolar ion exchange membranes. 60(4), 435-439.
  • Ghara, K. K., Korat, N., Bhalodia, D., Solanki, J., Maiti, P., & Ghosh, P. K. (2014). Production of pure potassium salts directly from sea bittern employing tartaric acid as a benign and recyclable K+ precipitant. RSC Advances, 4(65), 34706-34711.
  • Ghyselbrecht, K., Silva, A., Van der Bruggen, B., Boussu, K., Meesschaert, B., & Pinoy, L. J. J. o. e. m. (2014). Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. 140, 69-75.
  • Gunst, R. F., & Mason, R. L. (2009). Fractional factorial design. Wiley Interdisciplinary Reviews: Computational Statistics, 1(2), 234-244.
  • Hamzaoui, A. H., Jamoussi, B., & M'nif, A. (2008). Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy, 90(1), 1-7.
  • Hussein, A., Zohdy, K., & Abdelkreem, M. (2017). seawater bittern a precursor for magnesium chloride separation: Discussion and assessment of case studies. International Journal of Waste Resources, 7(1), 1-6.
  • Kleijnen, J. P. (2015). Design and analysis of simulation experiments. Paper presented at the International Workshop on Simulation.
  • Li, Y., Shi, S., Cao, H., Wu, X., Zhao, Z., & Wang, L. (2016). Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Water research, 89, 201-209.
  • Montgomery, D. C. (2017). Design and analysis of experiments: John wiley & sons.
  • Mordoğan, H., Ertem, M., Erbil, Ö., & Yamık, A. Çamaltı Tuzlası Artık Çözeltilerinin Değerlendirme Olanakları.
  • O'Brien, T. F., Bommaraju, T. V., & Hine, F. (2007). Handbook of Chlor-Alkali Technology: Volume I: Fundamentals, Volume II: Brine Treatment and Cell Operation, Volume III: Facility Design and Product Handling, Volume IV: Operations, Volume V: Corrosion, Environmental Issues, and Future Developments (Vol. 1): Springer Science & Business Media.
  • Pujiastuti, C., Sumada, K., Ngatilah, Y., & Hadi, P. (2016). Removal of Mg2+, K+, SO4-2 Ions from Seawater by Precipitation Method. Paper presented at the Matec Web of Conferences.
  • Sharp, C. (2012). Statistics for people who (think they) hate statistics [Book Review]. Evaluation Journal of Australasia, 12(1), 42.
  • Tongwen, X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resources, conservation and recycling, 37(1), 1-22.
  • Tongwen, X., Weihua, Y. J. C. E., & Intensification, P. P. (2002). Citric acid production by electrodialysis with bipolar membranes. 41(6), 519-524.
  • Trivedi, G., Shah, B., Adhikary, S., Indusekhar, V., Rangarajan, R. J. R., & Polymers, F. (1997). Studies on bipolar membranes. Part II—Conversion of sodium acetate to acetic acid and sodium hydroxide. 32(2), 209-215.
  • Trivedi, G., Shah, B., Adhikary, S., Rangarajan, R. J. R., & Polymers, F. (1999). Studies on bipolar membranes: Part III: conversion of sodium phosphate to phosphoric acid and sodium hydroxide. 39(1), 91-97.
  • Wei, Y., Li, C., Wang, Y., Zhang, X., Li, Q., & Xu, T. (2012). Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED). Separation and purification technology, 86, 49-54.
  • Xu, T. J. D. (2001). Development of bipolar membrane-based processes. 140(3), 247-258.
  • Yang, Y., Gao, X., Fan, A., Fu, L., & Gao, C. (2014). An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. Journal of Membrane Science, 449, 119-126.
  • Yang, Y., Gao, X., Fan, A., Fu, L., & Gao, C. J. J. o. m. s. (2014). An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. 449, 119-126.
  • Ye, W., Huang, J., Lin, J., Zhang, X., Shen, J., Luis, P., & Van der Bruggen, B. (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent. Separation and purification technology, 144, 206-214.

Bipolar Membran Elektrodiyaliziyle Simüle Atıksu Çözeltisinden KOH ve HCl Üretimini Etkileyen Parametrelerin Belirlenmesi İçin Kesirli Faktöriyel Tasarım Uygulaması

Year 2019, , 866 - 873, 31.12.2019
https://doi.org/10.31590/ejosat.646850

Abstract

Bu çalışmanın amacı, kesirli faktöriyel tasarımını kullanarak bipolar membran elektrodiyaliz ile bir simüle atık çözelti olarak hazırlanan potasyum klorür çözeltisinden potasyum hidroksit ve hidroklorik asit üretimini etkileyen önemli faktörleri belirlemektir. Deneylerde kullanılan membran hücresi asit, tuz ve baz bölmelerinden oluşmaktadır. Asit ve baz üretimini etkileyen parametreleri değerlendirmek için kesirli faktöriyel 24-1 tasarımı kullanılmıştır. Proses dört ana faktörün fonksiyonu olarak incelenmiştir. Bu faktörler, başlangıç asit ve baz konsantrasyonları, başlangıç tuz konsantrasyonu, akım yoğunluğu ve elektrolit konsantrasyonudur. Normal olasılık grafiği ve Pareto diyagramı, başlangıç tuz konsantrasyonunun bipolar membran elektrodiyaliz sistemini etkileyen en önemli parametre olduğunu ortaya koydu. Sonuçlar ayrıca ana etki grafikleri ve ANOVA yöntemi kullanılarak istatistiksel olarak analiz edildi. Başlangıç tuz konsantrasyonunun en etkin parametre olduğu her iki istatiksel bulguyla da doğrulandı.

References

  • Antony, J. (2014). Design of experiments for engineers and scientists: Elsevier.
  • Ata, O. N., Kanca, A., Demir, Z., & Yigit, V. (2017). Optimization of ammonia removal from aqueous solution by microwave-assisted air stripping. Water, Air, & Soil Pollution, 228(11), 448.
  • Badruzzaman, M., Oppenheimer, J., Adham, S., & Kumar, M. J. J. o. M. S. (2009). Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes. 326(2), 392-399.
  • Chang, S. H., Teng, T. T., & Ismail, N. (2011). Screening of factors influencing Cu (II) extraction by soybean oil-based organic solvents using fractional factorial design. Journal of environmental management, 92(10), 2580-2585.
  • Chérif, M., Mkacher, I., Dammak, L., Ben Salah, A., Walha, K., Nikonenko, V., . . . Grande, D. (2016). Fractional factorial design of water desalination by neutralization dialysis process: concentration, flow rate, and volume effects. Desalination and Water Treatment, 57(31), 14403-14413.
  • da Silva, R. G., Seckler, M., Rocha, S. D. F., Saturnino, D., & de Oliveira, É. D. (2017). Thermodynamic modeling of phases equilibrium in aqueous systems to recover potassium chloride from natural brines. Journal of Materials Research and Technology, 6(1), 57-64.
  • El-Taweel, T., & Haridy, S. (2014). An application of fractional factorial design in wire electrochemical turning process. The International Journal of Advanced Manufacturing Technology, 75(5-8), 1207-1218.
  • Epstein, J., Altaras, D., Feist, E., & Rosenzweig, J. (1975). The recovery of potassium chloride from Dead Sea brines by precipitation and solvent extraction. Hydrometallurgy, 1(1), 39-50.
  • Erkmen, J., & Yapici, S. (2016). A environmentally friendly process for boric acid and sodium hydroxide production from borax; bipolar membrane electrodialysis. Desalination and Water Treatment, 57(43), 20261-20269.
  • Erkmen, J., Yapıcı, S., Arzutuğ, M., Aydın, Ö., Ata, O., Öner, M. J. D., & Treatment, W. (2016). Hydrofluoric acid and sodium hydroxide production by bipolar membrane electrodialysis. 57(43), 20254-20260.
  • Fidaleo, M., Moresi, M. J. A. i. f., & research, n. (2006). Electrodialysis applications in the food industry. 51, 265-360.
  • Frilette, V. J. J. T. J. o. P. C. (1956). Preparation and characterization of bipolar ion exchange membranes. 60(4), 435-439.
  • Ghara, K. K., Korat, N., Bhalodia, D., Solanki, J., Maiti, P., & Ghosh, P. K. (2014). Production of pure potassium salts directly from sea bittern employing tartaric acid as a benign and recyclable K+ precipitant. RSC Advances, 4(65), 34706-34711.
  • Ghyselbrecht, K., Silva, A., Van der Bruggen, B., Boussu, K., Meesschaert, B., & Pinoy, L. J. J. o. e. m. (2014). Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. 140, 69-75.
  • Gunst, R. F., & Mason, R. L. (2009). Fractional factorial design. Wiley Interdisciplinary Reviews: Computational Statistics, 1(2), 234-244.
  • Hamzaoui, A. H., Jamoussi, B., & M'nif, A. (2008). Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy, 90(1), 1-7.
  • Hussein, A., Zohdy, K., & Abdelkreem, M. (2017). seawater bittern a precursor for magnesium chloride separation: Discussion and assessment of case studies. International Journal of Waste Resources, 7(1), 1-6.
  • Kleijnen, J. P. (2015). Design and analysis of simulation experiments. Paper presented at the International Workshop on Simulation.
  • Li, Y., Shi, S., Cao, H., Wu, X., Zhao, Z., & Wang, L. (2016). Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Water research, 89, 201-209.
  • Montgomery, D. C. (2017). Design and analysis of experiments: John wiley & sons.
  • Mordoğan, H., Ertem, M., Erbil, Ö., & Yamık, A. Çamaltı Tuzlası Artık Çözeltilerinin Değerlendirme Olanakları.
  • O'Brien, T. F., Bommaraju, T. V., & Hine, F. (2007). Handbook of Chlor-Alkali Technology: Volume I: Fundamentals, Volume II: Brine Treatment and Cell Operation, Volume III: Facility Design and Product Handling, Volume IV: Operations, Volume V: Corrosion, Environmental Issues, and Future Developments (Vol. 1): Springer Science & Business Media.
  • Pujiastuti, C., Sumada, K., Ngatilah, Y., & Hadi, P. (2016). Removal of Mg2+, K+, SO4-2 Ions from Seawater by Precipitation Method. Paper presented at the Matec Web of Conferences.
  • Sharp, C. (2012). Statistics for people who (think they) hate statistics [Book Review]. Evaluation Journal of Australasia, 12(1), 42.
  • Tongwen, X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resources, conservation and recycling, 37(1), 1-22.
  • Tongwen, X., Weihua, Y. J. C. E., & Intensification, P. P. (2002). Citric acid production by electrodialysis with bipolar membranes. 41(6), 519-524.
  • Trivedi, G., Shah, B., Adhikary, S., Indusekhar, V., Rangarajan, R. J. R., & Polymers, F. (1997). Studies on bipolar membranes. Part II—Conversion of sodium acetate to acetic acid and sodium hydroxide. 32(2), 209-215.
  • Trivedi, G., Shah, B., Adhikary, S., Rangarajan, R. J. R., & Polymers, F. (1999). Studies on bipolar membranes: Part III: conversion of sodium phosphate to phosphoric acid and sodium hydroxide. 39(1), 91-97.
  • Wei, Y., Li, C., Wang, Y., Zhang, X., Li, Q., & Xu, T. (2012). Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED). Separation and purification technology, 86, 49-54.
  • Xu, T. J. D. (2001). Development of bipolar membrane-based processes. 140(3), 247-258.
  • Yang, Y., Gao, X., Fan, A., Fu, L., & Gao, C. (2014). An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. Journal of Membrane Science, 449, 119-126.
  • Yang, Y., Gao, X., Fan, A., Fu, L., & Gao, C. J. J. o. m. s. (2014). An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. 449, 119-126.
  • Ye, W., Huang, J., Lin, J., Zhang, X., Shen, J., Luis, P., & Van der Bruggen, B. (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent. Separation and purification technology, 144, 206-214.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Said Rajab Abdullahi This is me 0000-0001-6228-3841

Muhammed Raşit Öner This is me 0000-0003-3376-7024

Osman Nuri Ata 0000-0003-4742-0734

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Abdullahi, S. R., Öner, M. R., & Ata, O. N. (2019). Fractional Factorial Design Application for the Determination of Parameters Affecting KOH and HCl Generation from Simulated Wastewater Solution by Bipolar Membrane Electrodialysis. Avrupa Bilim Ve Teknoloji Dergisi(17), 866-873. https://doi.org/10.31590/ejosat.646850