Research Article
BibTex RIS Cite

Comparison of the Models of Solar PV Performance Calculations for Ankara – Middle Anatolia

Year 2020, , 54 - 60, 15.04.2020
https://doi.org/10.31590/ejosat.653272

Abstract

In a techno-economic analysis, to reach truthful feasibilities, accurate performance calculations of PV systems are a must. There are many models/calculation schemes to estimate PV module performances. In this study, we compare the estimation of three software (PV*Sol, PVSyst, HelioScope) using a whole year field data obtained in Ankara, for five module types (Mono-Si, Poly-Si, µc-Si/a-Si, CIS, and HIT). Our analysis showed that the calculation schemes of the performances should be carefully evaluated and used as they contain quite many located dependent empirical parameters, and distinctions in the fabricated modules. The comparisons showed that the estimation accuracies of the software are reasonable, yet software Helioscope performs better than the others for weather conditions of Ankara, Middle Anatolia.

Supporting Institution

Ministry of Development

Project Number

BAP-08.11.2015K121200

Thanks

The authors acknowledge the support given by the for the construction of the outdoor testing facility (Project number: BAP-08.11.2015K121200).

References

  • Climate Change & Infectious Diseases Group. (2019). World Maps of Köppen-Geiger climate classification. Retrieved from Climate Change & Infectious Diseases Group website: http://koeppen-geiger.vu-wien.ac.at/present.htm
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (4th ed.). https://doi.org/10.1002/9781118671603
  • EIA. (2017). International Energy Outlook 2017 Overview. In U.S. Energy Information Administration. Retrieved from https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
  • IRENA. (2018). Renewable Power Generation Costs in 2017. In International Renewable Energy Agency. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf
  • Karaveli, A B, Ozden, T., & Akinoglu, B. G. (2018). Determining Photovoltaic Module Performance and Comparisons. 2018 International Conference on Photovoltaic Science and Technologies (PVCon), 1–5. https://doi.org/10.1109/PVCon.2018.8523868
  • Karaveli, Abdullah Bugrahan. (2018). Development of the Algorithm of Solar Turnkey: Solar Electricity Software for Turkey. METU, Earth System Science, Ph.D Thesis.
  • Karaveli, Abdullah Bugrahan, & Akinoglu, B. G. (2018). Development of new monthly global and diffuse solar irradiation estimation methodologies and comparisons. International Journal of Green Energy, 15(5), 333–346. https://doi.org/10.1080/15435075.2018.1452744
  • Karaveli, Abdullah Bugrahan, Soytas, U., & Akinoglu, B. G. (2015). Comparison of large scale solar PV (photovoltaic) and nuclear power plant investments in an emerging market. Energy, 84, 656–665. https://doi.org/10.1016/j.energy.2015.03.025
  • K̈oppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impac. Meteorologische Zeitschrift, 1, 215–226. https://doi.org/10.1127/0941-2948/2011/105
  • Labouret, A., & Villoz, M. (2010). Solar Photovoltaic Energy. The Institution of Engineering and Technology.
  • Mayer, J. N., Philipps, S., Hussein, N. S., Schlegl, T., & Senkpiel, C. (2015). Current and Future Cost of Photovoltaics. In Agora Energiewende. Retrieved from https://www.agora-energiewende.de/fileadmin2/Projekte/2014/Kosten-Photovoltaik-2050/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf
  • Mellit, A., Kalogirou, S. A., Hontoria, L., & Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(2), 406–419. https://doi.org/https://doi.org/10.1016/j.rser.2008.01.006
  • NREL. (2019). Best Research-Cell Efficiency Chart. Retrieved from NREL website: https://www.nrel.gov/pv/cell-efficiency.html
  • Ogulgonen, G., Ozden, T., Yardim, U., Turan, R., & Kincal, S. (2015). A low cost outdoor testing facility for detailed photovoltaic device performance characterization. Physica Status Solidi (C), 12(9–11), 1267–1271. https://doi.org/10.1002/pssc.201510110
  • Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorologische Zeitschrift, 26(2), 115–125. https://doi.org/10.1127/metz/2016/0816
  • Solar Power Europe. (2017). Digitalisation & Solar Task Force Report. In Solar Power Europe. Retrieved from https://www.solarpowereurope.org/wp-content/uploads/2018/09/Digitalisation_and_Solar_report_SolarPower_Europe_MEDIUM_RES.pdf
  • Solar Power Europe. (2018). Global Market Outlook For Solar Power / 2018 - 2022. In Solar Power Europe. Retrieved from http://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdf
  • United Nations. (2019). Sustainable Development Goals: Ensure access to affordable, reliable, sustainable and modern energy. Retrieved from https://www.un.org/sustainabledevelopment/energy/

Fotovoltaik Sistemlerde Performans Hesaplama Modellerinin Ankara (Orta Anadolu) için Karşılaştırılması

Year 2020, , 54 - 60, 15.04.2020
https://doi.org/10.31590/ejosat.653272

Abstract

Tekno-ekonomik analizlerde doğru fizibilite sonuçlarına erişebilmek için FV sistemlerin performansı gerçeğe yakın hesaplanmak zorundadır. FV sistem performansını tahminlemek için birçok model/hesaplama yöntemi vardır. Bu çalışmada, tüm yıl boyunca beş modül için (Mono-Si, Poly-Si, µc-Si/a-Si, CIS, ve HIT) Ankara’da ölçülmüş açık alan test verileri ile üç yazılımın (PV*Sol, PVSyst, HelioScope) aynı yer için tahmin sonuçları karşılaştırılmıştır. Analizler, performans hesaplama yöntemleri çok sayıda bağımlı ampirik parametre ve üretilen modüllerdeki farklılıkları içerdiklerinden dikkatli bir şekilde değerlendirilmesi ve kullanılması gerektiğini gösterdi. Karşılaştırma sonuçları yazılımların tahminleme doğruluklarının makul seviyede olduğunu ortaya çıkarmıştır ancak Heiloscope Ankara’nın (Orta Anadolu) iklim koşulları için diğerlerinden daha iyi performans göstermiştir.

Project Number

BAP-08.11.2015K121200

References

  • Climate Change & Infectious Diseases Group. (2019). World Maps of Köppen-Geiger climate classification. Retrieved from Climate Change & Infectious Diseases Group website: http://koeppen-geiger.vu-wien.ac.at/present.htm
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (4th ed.). https://doi.org/10.1002/9781118671603
  • EIA. (2017). International Energy Outlook 2017 Overview. In U.S. Energy Information Administration. Retrieved from https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
  • IRENA. (2018). Renewable Power Generation Costs in 2017. In International Renewable Energy Agency. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf
  • Karaveli, A B, Ozden, T., & Akinoglu, B. G. (2018). Determining Photovoltaic Module Performance and Comparisons. 2018 International Conference on Photovoltaic Science and Technologies (PVCon), 1–5. https://doi.org/10.1109/PVCon.2018.8523868
  • Karaveli, Abdullah Bugrahan. (2018). Development of the Algorithm of Solar Turnkey: Solar Electricity Software for Turkey. METU, Earth System Science, Ph.D Thesis.
  • Karaveli, Abdullah Bugrahan, & Akinoglu, B. G. (2018). Development of new monthly global and diffuse solar irradiation estimation methodologies and comparisons. International Journal of Green Energy, 15(5), 333–346. https://doi.org/10.1080/15435075.2018.1452744
  • Karaveli, Abdullah Bugrahan, Soytas, U., & Akinoglu, B. G. (2015). Comparison of large scale solar PV (photovoltaic) and nuclear power plant investments in an emerging market. Energy, 84, 656–665. https://doi.org/10.1016/j.energy.2015.03.025
  • K̈oppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impac. Meteorologische Zeitschrift, 1, 215–226. https://doi.org/10.1127/0941-2948/2011/105
  • Labouret, A., & Villoz, M. (2010). Solar Photovoltaic Energy. The Institution of Engineering and Technology.
  • Mayer, J. N., Philipps, S., Hussein, N. S., Schlegl, T., & Senkpiel, C. (2015). Current and Future Cost of Photovoltaics. In Agora Energiewende. Retrieved from https://www.agora-energiewende.de/fileadmin2/Projekte/2014/Kosten-Photovoltaik-2050/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf
  • Mellit, A., Kalogirou, S. A., Hontoria, L., & Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(2), 406–419. https://doi.org/https://doi.org/10.1016/j.rser.2008.01.006
  • NREL. (2019). Best Research-Cell Efficiency Chart. Retrieved from NREL website: https://www.nrel.gov/pv/cell-efficiency.html
  • Ogulgonen, G., Ozden, T., Yardim, U., Turan, R., & Kincal, S. (2015). A low cost outdoor testing facility for detailed photovoltaic device performance characterization. Physica Status Solidi (C), 12(9–11), 1267–1271. https://doi.org/10.1002/pssc.201510110
  • Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorologische Zeitschrift, 26(2), 115–125. https://doi.org/10.1127/metz/2016/0816
  • Solar Power Europe. (2017). Digitalisation & Solar Task Force Report. In Solar Power Europe. Retrieved from https://www.solarpowereurope.org/wp-content/uploads/2018/09/Digitalisation_and_Solar_report_SolarPower_Europe_MEDIUM_RES.pdf
  • Solar Power Europe. (2018). Global Market Outlook For Solar Power / 2018 - 2022. In Solar Power Europe. Retrieved from http://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdf
  • United Nations. (2019). Sustainable Development Goals: Ensure access to affordable, reliable, sustainable and modern energy. Retrieved from https://www.un.org/sustainabledevelopment/energy/
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Talat Özden 0000-0002-0781-2904

Abdullah Karaveli 0000-0001-5836-2889

Bülent Akınoğlu 0000-0003-1987-6937

Project Number BAP-08.11.2015K121200
Publication Date April 15, 2020
Published in Issue Year 2020

Cite

APA Özden, T., Karaveli, A., & Akınoğlu, B. (2020). Comparison of the Models of Solar PV Performance Calculations for Ankara – Middle Anatolia. Avrupa Bilim Ve Teknoloji Dergisi(18), 54-60. https://doi.org/10.31590/ejosat.653272