Research Article
BibTex RIS Cite

Soğuk Press Kiraz (Prunus avium) Tohum Yağının Bazı Fizikokimyasal Özellikleri

Year 2019, , 959 - 965, 31.12.2019
https://doi.org/10.31590/ejosat.656768

Abstract

Bu çalışma kiraz çekirdeği yağının fizikokimyasal özellikleri (PV, FFA, toplam fenolik madde ve antioksidan aktivite), yağ asidi, sterol, tokoferol ve fenolik bileşen kompozisyonunu belirlenmesini amaçlamıştır. Bu çalışmada kullanılan kiraz çekirdeği yağı soğuk presleme yöntemiyle eld edilmiştir. Kiraz çekirdeği yağının PV ve FFA değerleri sırasıyla 1.40 meqO2/kg ve 2.71 % olarak tespit edilmiştir. Kiraz çekirdeği yağının görünür viskozite değeri 0.057 Pa.s olarak tespit edilmiştir. Kiraz çekirdeği yağının TPC ve AC değerleri sırasıyla 22.17 mg/kg ve 1.05 TE μM g-1. Kiraz çekirdeği yağının doymamış yağ asitleri miktarı doymuş yağ aside miktarından daha yüksek olarak tespit edilmiştir. Yağın tekli doymamış yağ asitleri miktarı (%40.50) çoklu doymaış yağ asitleri miktarından (%52.03) daha az çıkmıştır. Oleik ve linoleic asit major yağ asitleri olarak tespit edilmiş ve değerleri %36.73 ve %39.45 olarak bulunmuştur. 14 farklı bitkisel sterol tanımlanmıştır. -sitosterol %88.93 oranıyla en yüksek miktarda tespit edilen steroldür. -sitosterolden sonra Kampesterol (3.12%), 7-stigmasterol (2.48%), 5-avenasterol (2.12%) ve sitostanol (1.42%) yüksek miktarda tespit edilen sterollerdir. Diğer steroller az miktarda tespit edilmiştir (<%1). , ,  and  olmak üzere 4 farklı tokoferol kiraz çekirdeği yağının karakterizasyonu için tanımlanmıştır. - tokoferol (%96.72) major olarak tespit edilmiştir. -tokoferolü -tocopherols (57.40 mg/kg) ve  tocopherols takip etmiştir. - düşük oranda tespit edilmiştir. Bu çalışma kiraz çekirdeği yağının yüksek biyoaktif madde içermesi ve düşük PV ve FFA değerlerinden dolayı gıda sanaayinde kullanılabileceğini göstermiştir.

References

  • Al Juhaimi, F., & Özcan, M. M. (2018). Effect of cold press and soxhlet extraction systems on fatty acid, tocopherol contents, and phenolic compounds of various grape seed oils. Journal of Food Processing and Preservation, 42(1), e13417. doi: 10.1111/jfpp.13417
  • Bernardo-Gil, G., Oneto, C., Antunes, P., Rodrigues, M. F., & Empis, J. M. (2001). Extraction of lipids from cherry seed oil using supercritical carbon dioxide. [journal article]. European Food Research and Technology, 212(2), 170-174. doi: 10.1007/s002170000228
  • Bin Sayeed, M., Karim, S., Sharmin, T., & Morshed, M. (2016). Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. Medicines, 3(4), 29.
  • Boso, S., Gago, P., Santiago, J.-L., Rodríguez-Canas, E., & Martínez, M.-C. (2018). New monovarietal grape seed oils derived from white grape bagasse generated on an industrial scale at a winemaking plant. LWT, 92, 388-394. doi: https://doi.org/10.1016/j.lwt.2018.02.055
  • Comes, F., Farines, M., Aumelas, A., & Soulier, J. (1992). Fatty acids and triacylglycerols of cherry seed oil. [journal article]. Journal of the American Oil Chemists Society, 69(12), 1224-1227. doi: 10.1007/bf02637685
  • Doğantürk, M., & Seçilmiş Canbay, H. (2019). Oil ratıo and fatty acıd composıtıon of cherry seed oil.
  • Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., & Segliņa, D. (2016). Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Industrial Crops and Products, 82, 44-50. doi: https://doi.org/10.1016/j.indcrop.2015.12.010
  • IUPAC, 1992. Standard methods for the analysis of oils, fats and derivatives. 7th ed., Paquot, C. and Hautfenne, A. (Eds.) International Union of Pure and Applied Chemistry, Blackwell Scientific Publications Inc., Oxford, UK
  • Kamm, W., Dionisi, F., Fay, L. B., Hischenhuber, C., Schmarr, H. G., & Engel, K. H. (2002). Rapid and simultaneous analysis of 16-O-methylcafestol and sterols as markers for assessment of green coffee bean authenticity by on-line LC-GC. [Article]. Journal of the American Oil Chemists Society, 79(11), 1109-1113. doi: 10.1007/s11746-002-0612-5
  • Koç, M., Gecgel, U., Karasu, S., Tırpancı Sivri, G., Apaydın, D., Gülcü, M., & Ozcan, M. M. (2019). Valorisation of seeds from different grape varieties for protein, mineral, bioactive compounds content, and oil quality. Quality Assurance and Safety of Crops & Foods, 11, 1-10. doi: 10.3920/qas2018.1507
  • Siano, F., Straccia, M. C., Paolucci, M., Fasulo, G., Boscaino, F., & Volpe, M. G. (2016). Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. Journal of the Science of Food and Agriculture, 96(5), 1730-1735. doi: 10.1002/jsfa.7279
  • Singh, R. P., Murthy, K. N. C., & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. [Article]. Journal of Agricultural and Food Chemistry, 50(1), 81-86. doi: 10.1021/jf010865b
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Vázquez, L., Corzo-Martínez, M., Arranz-Martínez, P., Barroso, E., Reglero, G., & Torres, C. (2018). Bioactive Lipids. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive Molecules in Food (pp. 1-61). Cham: Springer International Publishing.
  • Yılmaz, C., & Gökmen, V. (2013). Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Industrial Crops and Products, 49, 130-135. doi: https://doi.org/10.1016/j.indcrop.2013.04.048

Characterization of Some Physicochemical Properties of Cold Press Sweet Cherry (Prunus avium) Seed Oil

Year 2019, , 959 - 965, 31.12.2019
https://doi.org/10.31590/ejosat.656768

Abstract

This study aimed to determine physicochemical properties (PV, FFA, total phenolic content, antioxidant activity), fatty acid, sterol, tocopherol and phenolic compound profile of sweet cherry seed oil. Sweet cherry oil was obtained by cold press process. Tocopherol and phenolic compounds were determined by HPLC and fatty acid and sterol composition were analyzed by GC system. PV and FFA values were found as 1.40 meqO2/kg and 2.71 % respectively. Apparent viscosity value was 0.057 Pa.s. TPC and AC values of the sweet cherry oil were determined as 22.17 mg/kg and 1.05 TE μM g-1. UFA content was higher than that of the SFA. SFA and UFA levels were 10.47% and 89.53 % respectively. MUFA (40.50 %) level was lower than PUFA level (52.03%). Oleic acid and linoleic acid were found to be major fatty acids with a ratio of 36.73% and 39.45 %, respectively. 14 different sterols were analyzed for sweet cherry seed oil. -sitosterol was found to be the major sterol with a ratio of 88.93 % followed by campesterol (3.12%), 7-stigmasterol (2.48%), 5-avenasterol (2.12%) and sitostanol (1.42%). Other sterols showed small amount (<1%). Total four tocopherols namely, , ,  and  tocopherols were identified for sweet cherry oils. -tocopherols (96.72 mg /kg) were found as major tocopherol followed by -tocopherols (57.40 mg/kg) and  tocopherols. -tocopherol showed a small amount. This study suggested that sweet cherry seed oil can be utilized in food industry due to high level of bioactive compounds and low levels of PV and FFA content.

References

  • Al Juhaimi, F., & Özcan, M. M. (2018). Effect of cold press and soxhlet extraction systems on fatty acid, tocopherol contents, and phenolic compounds of various grape seed oils. Journal of Food Processing and Preservation, 42(1), e13417. doi: 10.1111/jfpp.13417
  • Bernardo-Gil, G., Oneto, C., Antunes, P., Rodrigues, M. F., & Empis, J. M. (2001). Extraction of lipids from cherry seed oil using supercritical carbon dioxide. [journal article]. European Food Research and Technology, 212(2), 170-174. doi: 10.1007/s002170000228
  • Bin Sayeed, M., Karim, S., Sharmin, T., & Morshed, M. (2016). Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. Medicines, 3(4), 29.
  • Boso, S., Gago, P., Santiago, J.-L., Rodríguez-Canas, E., & Martínez, M.-C. (2018). New monovarietal grape seed oils derived from white grape bagasse generated on an industrial scale at a winemaking plant. LWT, 92, 388-394. doi: https://doi.org/10.1016/j.lwt.2018.02.055
  • Comes, F., Farines, M., Aumelas, A., & Soulier, J. (1992). Fatty acids and triacylglycerols of cherry seed oil. [journal article]. Journal of the American Oil Chemists Society, 69(12), 1224-1227. doi: 10.1007/bf02637685
  • Doğantürk, M., & Seçilmiş Canbay, H. (2019). Oil ratıo and fatty acıd composıtıon of cherry seed oil.
  • Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., & Segliņa, D. (2016). Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Industrial Crops and Products, 82, 44-50. doi: https://doi.org/10.1016/j.indcrop.2015.12.010
  • IUPAC, 1992. Standard methods for the analysis of oils, fats and derivatives. 7th ed., Paquot, C. and Hautfenne, A. (Eds.) International Union of Pure and Applied Chemistry, Blackwell Scientific Publications Inc., Oxford, UK
  • Kamm, W., Dionisi, F., Fay, L. B., Hischenhuber, C., Schmarr, H. G., & Engel, K. H. (2002). Rapid and simultaneous analysis of 16-O-methylcafestol and sterols as markers for assessment of green coffee bean authenticity by on-line LC-GC. [Article]. Journal of the American Oil Chemists Society, 79(11), 1109-1113. doi: 10.1007/s11746-002-0612-5
  • Koç, M., Gecgel, U., Karasu, S., Tırpancı Sivri, G., Apaydın, D., Gülcü, M., & Ozcan, M. M. (2019). Valorisation of seeds from different grape varieties for protein, mineral, bioactive compounds content, and oil quality. Quality Assurance and Safety of Crops & Foods, 11, 1-10. doi: 10.3920/qas2018.1507
  • Siano, F., Straccia, M. C., Paolucci, M., Fasulo, G., Boscaino, F., & Volpe, M. G. (2016). Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. Journal of the Science of Food and Agriculture, 96(5), 1730-1735. doi: 10.1002/jsfa.7279
  • Singh, R. P., Murthy, K. N. C., & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. [Article]. Journal of Agricultural and Food Chemistry, 50(1), 81-86. doi: 10.1021/jf010865b
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Vázquez, L., Corzo-Martínez, M., Arranz-Martínez, P., Barroso, E., Reglero, G., & Torres, C. (2018). Bioactive Lipids. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive Molecules in Food (pp. 1-61). Cham: Springer International Publishing.
  • Yılmaz, C., & Gökmen, V. (2013). Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Industrial Crops and Products, 49, 130-135. doi: https://doi.org/10.1016/j.indcrop.2013.04.048
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İlker Atik 0000-0001-8049-0465

Ramazan Şevik 0000-0002-5429-5882

Salih Karasu 0000-0003-0597-283X

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Atik, İ., Şevik, R., & Karasu, S. (2019). Characterization of Some Physicochemical Properties of Cold Press Sweet Cherry (Prunus avium) Seed Oil. Avrupa Bilim Ve Teknoloji Dergisi(17), 959-965. https://doi.org/10.31590/ejosat.656768