Fracture Toughness Enhancement of Fuzzy CNT-Glass Fiber Reinforced Composites with a Combined Reinforcing Strategy
Year 2019,
, 1325 - 1333, 31.12.2019
Kaan Yıldız
,
İdris Gürkan
,
Fırat Turgut
,
Hülya Cebeci
Abstract
Low interlaminar mechanical properties is the foremost drawback of glass fiber reinforced composites (GFRPs). Hierarchical nanoparticles on fibers (e.g. carbon nanotubes (CNTs)) can improve interlaminar properties of composites with negligible weight increase because of excellent mechanical properties, and low density. Interlaminar properties of composites can be enhanced with the well-dispersed CNTs in polymer matrices as it facilitates load transfer from matrix to fibers. Particularly, structural improvements with no significant weight increase are highly desirable in the aerospace industry and therefore CNTs offer a wide and interesting research area. This paper investigates the mechanical properties of CNT-reinforced GFRPs. Two reinforcing strategies were studied as dispersion of CNTs in epoxy matrix and direct growth of CNTs onto glass fibers (GFs), simultaneously. The former is referred to as nanotube-reinforced composites (NRCs) while the latter is known as fuzzy architectures. Furthermore, the combination of NRCs and fuzzy glass fibers (F-GFs), also known as fuzzy nano-reinforced composites (F-NRCs), is used to fabricate composites and identify the reinforcing capabilities through both methods. In this study, the focus is given to F-GFs and F-NRCs, and the potential of these reinforcing strategies are evaluated through experimental studies. The morphology of the fabricated composite specimens is characterized using scanning electron microscopy (SEM) to observe the hierarchical CNT structures on the fibers. Additionally, Raman Spectroscopy and thermogravimetric analyses (TGA) are conducted to evaluate the quality and the thermal stability of the samples. Mechanical properties are investigated by Mode-I fracture toughness and unidirectional (UD) composite tensile tests. Even though F-NRCs yield 150% improvement in the fracture toughness compared to baseline samples, the tensile strength of F-NRCs is found to be decreasing by 25% due to heat treatment during the CNT synthesis.
References
- An, Q., Rider, A. N., & Thostenson, E. T. (2012). Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon, 50(11), 4130–4143. https://doi.org/10.1016/j.carbon.2012.04.061
- An, Q., Tamrakar, S., Gillespie, J. W., Rider, A. N., & Thostenson, E. T. (2018). Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: Fiber and interphase characterization. Composites Science and Technology, 166, 131–139. https://doi.org/10.1016/J.COMPSCITECH.2018.01.003
- Arai, M., Noro, Y., Sugimoto, K. ichi, & Endo, M. (2008). Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 68(2), 516–525. https://doi.org/10.1016/j.compscitech.2007.06.007
- Ashrafi, B., Guan, J., Mirjalili, V., Zhang, Y., Chun, L., Hubert, P., … Johnston, A. (2011). Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Composites Science and Technology, 71(13), 1569–1578. https://doi.org/https://doi.org/10.1016/j.compscitech.2011.06.015
- Bilisik, K., & Sapanci, E. (2019). Plain para-aramid/phenolic multiwall carbon nanotubes prepreg/multistiched preform composites: Experimental characterization of mode-I toughness. Journal of Composite Materials, 53(13), 1847–1864. https://doi.org/10.1177/0021998318812176
- Boroujeni, A. Y., Tehrani, M., Manteghi, M., Zhou, Z., & Al-Haik, M. (2016). Electromagnetic Shielding Effectiveness of a Hybrid Carbon Nanotube/Glass Fiber Reinforced Polymer Composite. Journal of Engineering Materials and Technology, 138(4), 041001. https://doi.org/10.1115/1.4033576
- Cha, J., Jun, G. H., Park, J. K., Kim, J. C., Ryu, H. J., & Hong, S. H. (2017). Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Composites Part B: Engineering, 129, 169–179. https://doi.org/10.1016/j.compositesb.2017.07.070
- Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., & Vahid, S. (2015). Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale, 7(23), 10294–10329. https://doi.org/10.1039/C5NR01354B
- Falzon, B. G., Hawkins, S. C., Huynh, C. P., Radjef, R., & Brown, C. (2013). An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Composite Structures. https://doi.org/10.1016/j.compstruct.2013.05.051
- Feih, S., Manatpon, K., Mathys, Z., Gibson, A. G., & Mouritz, A. P. (2009). Strength degradation of glass fibers at high temperatures. Journal of Materials Science, 44(2), 392–400. https://doi.org/10.1007/s10853-008-3140-x
- Garcia, E. J., Wardle, B. L., John Hart, A., & Yamamoto, N. (2008). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology, 68(9), 2034–2041. https://doi.org/10.1016/j.compscitech.2008.02.028
- Gibson, R. F. (2010). A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures, 92(12), 2793–2810. https://doi.org/10.1016/j.compstruct.2010.05.003
- Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S. V, van Vuure, A. W., … Verpoest, I. (2009). Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon, 47(12), 2914–2923. https://doi.org/https://doi.org/10.1016/j.carbon.2009.06.039
- Gojny, F.H., Wichmann, M. H. G., Köpke, U., Fiedler, B., & Schulte, K. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 64(15), 2363–2371. https://doi.org/10.1016/J.COMPSCITECH.2004.04.002
- Gojny, F.H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W., & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36(11), 1525–1535. https://doi.org/10.1016/j.compositesa.2005.02.007
- Greenhalgh, E. S. B. T.-F. A. and F. of P. C. (Ed.). (2009). 4 - Delamination-dominated failures in polymer composites. In Woodhead Publishing Series in Composites Science and Engineering (pp. 164–237). https://doi.org/https://doi.org/10.1533/9781845696818.164
- Harris, B. (1999). Engineering composite materials. IoM London
- Jamnani, B. D., Hosseini, S., Rahmanian, S., Rashid, S. A., & Balavandy, S. K. (2015). Grafting carbon nanotubes on glass fiber by dip coating technique to enhance tensile and interfacial shear strength. Journal of Nanomaterials, 16(1), 306.
- Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., & Paipetis, A. (2009). Enhanced Fracture Properties of Carbon Reinforced Composites by the Addition of Multi-Wall Carbon Nanotubes. Journal of Composite Materials, 43, 977–985. https://doi.org/10.1177/0021998308097735
- Kawada, H., Sato, S., & Kameya, M. (2012). Modification of the Interface in Carbon Nanotube-Grafted T-Glass Fiber. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) (Vol. 3). https://doi.org/10.1115/IMECE2012-89318
- Kaynan, O., Atescan, Y., Ozden-Yenigun, E., & Cebeci, H. (2018). Mixed Mode delamination in carbon nanotube/nanofiber interlayered composites. Composites Part B: Engineering, 154(March), 186–194. https://doi.org/10.1016/j.compositesb.2018.07.032
- Kepple, K. L., Sanborn, G. P., Lacasse, P. A., Gruenberg, K. M., & Ready, W. J. (2008). Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon. https://doi.org/10.1016/j.carbon.2008.08.010
- Kim, J. A., Seong, D. G., Kang, T. J., & Youn, J. R. (2006). Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44(10), 1898–1905. https://doi.org/10.1016/J.CARBON.2006.02.026
- Lee, S.-H., Noguchi, H., Kim, Y.-B., & Cheong, S.-K. (2002). Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part II–Mode I. Journal of Composite Materials, 36(18), 2169–2181.
- Lehman, J. H., Terrones, M., Mansfield, E., Hurst, K. E., & Meunier, V. (2011). Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 49(8), 2581–2602. https://doi.org/10.1016/j.carbon.2011.03.028
- Li, M., Gu, Y., Liu, Y., Li, Y., & Zhang, Z. (2013). Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon, 52, 109–121. https://doi.org/10.1016/j.carbon.2012.09.011
- Li, R., Antunes, E. F., Kalfon-Cohen, E., Kudo, A., Acauan, L., Yang, W.-C. D., … Wardle, B. L. (2019). Low-Temperature Growth of Carbon Nanotubes Catalyzed by Sodium-based Ingredients. Angewandte Chemie International Edition, 1–7. https://doi.org/10.1002/anie.201902516
- Li, R., Lachman, N., Florin, P., Wagner, H. D., & Wardle, B. L. (2015). Hierarchical carbon nanotube carbon fiber unidirectional composites with preserved tensile and interfacial properties. Composites Science and Technology, 117, 139–145. https://doi.org/10.1016/j.compscitech.2015.04.014
- Mallick, P. K. (2007). Fiber-reinforced composites: materials, manufacturing, and design. CRC press.
- Meshot, E. R., Plata, D. L., Tawfick, S., Zhang, Y., Verploegen, E. A., & Hart, A. J. (2009). Engineering Vertically Aligned Carbon Nanotube Growth by Decoupled Thermal Treatment of Precursor and Catalyst. ACS Nano, 3(9), 2477–2486. https://doi.org/10.1021/nn900446a
- Qian, H., Bismarck, A., Greenhalgh, E. S., Kalinka, G., & Shaffer, M. S. P. (2008). Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chemistry of Materials, 20(5), 1862–1869. https://doi.org/10.1021/cm702782j
- Rahaman, A., & Kar, K. K. (2014). Carbon nanomaterials grown on E-glass fibers and their application in composite. Composites Science and Technology, 101, 1–10. https://doi.org/10.1016/J.COMPSCITECH.2014.06.019
- Sadeghian, R., Gangireddy, S., Minaie, B., & Hsiao, K.-T. (2006). Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A: Applied Science and Manufacturing, 37(10), 1787–1795. https://doi.org/https://doi.org/10.1016/j.compositesa.2005.09.010
- Storck, S., Malecki, H., Shah, T., & Zupan, M. (2011). Improvements in interlaminar strength: A carbon nanotube approach. Composites Part B: Engineering, 42(6), 1508–1516. https://doi.org/10.1016/j.compositesb.2011.04.039
- Thomason, J. L., Nagel, U., Yang, L., & Bryce, D. (2019). A study of the thermal degradation of glass fibre sizings at composite processing temperatures. Composites Part A: Applied Science and Manufacturing, 121(December 2018), 56–63. https://doi.org/10.1016/j.compositesa.2019.03.013
- Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., … Ghasemi-Nejhad, M. N. (2006). Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Materials, 5(6), 457–462. https://doi.org/10.1038/nmat1650
- Wang, Y., Raman Pillai, S. K., Che, J., & Chan-Park, M. B. (2017). High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber- and Matrix-Anchored Carbon Nanotube Networks. ACS Applied Materials and Interfaces, 9(10), 8960–8966. https://doi.org/10.1021/acsami.6b13197
- Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., … Verpoest, I. (2010). The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41(4), 532–538. https://doi.org/10.1016/j.compositesa.2010.01.001
- Wicks, S. S., de Villoria, R. G., & Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology, 70(1), 20–28. https://doi.org/10.1016/j.compscitech.2009.09.001
- Wicks, S. S., Wang, W., Williams, M. R., & Wardle, B. L. (2014). Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes. Composites Science and Technology, 100, 128–135. https://doi.org/10.1016/j.compscitech.2014.06.003
- Yamamoto, N., John Hart, A., Garcia, E. J., Wicks, S. S., Duong, H. M., Slocum, A. H., & Wardle, B. L. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon, 47(3), 551–560. https://doi.org/10.1016/j.carbon.2008.10.030
- Yokozeki, T., Iwahori, Y., Ishiwata, S., & Enomoto, K. (2007). Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Composites Part A: Applied Science and Manufacturing, 38(10), 2121–2130. https://doi.org/10.1016/j.compositesa.2007.07.002
- Zeiler, R., Kuttner, C., Khalid, U., Kothmann, M. H., & Dijkstra, D. J. (2016). Polyvinyl Alcohol-Modified Pithecellobium Clypearia Benth Herbal Residue FiberPolypropylene Composites. Polymer Composites, 37(1), 915–924. https://doi.org/10.1002/pc
- Zhang, H., Liu, Y., Kuwata, M., Bilotti, E., & Peijs, T. (2015). Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Composites Part A: Applied Science and Manufacturing, 70, 102–110. https://doi.org/10.1016/j.compositesa.2014.11.029
- Zhao, Z., Teng, K., Li, N., Li, X., Xu, Z., Chen, L., … Fu, H. (2017). Mechanical , thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix / interface. Composite Structures, 159, 761–772. https://doi.org/10.1016/j.compstruct.2016.10.022
KNT-Cam Fiber Takviyeli Kompozitlerin Kırılma Tokluğunun Birleşik Bir Güçlendirme Stratejisi ile İyileştirilmesi
Year 2019,
, 1325 - 1333, 31.12.2019
Kaan Yıldız
,
İdris Gürkan
,
Fırat Turgut
,
Hülya Cebeci
Abstract
Düzlem-dışı yükleme durumlarında karşılaşılan düşük katmanlararası mekanik özellikler, cam fiber takviyeli kompozitlerin (GFRP) sahip olduğu en büyük kusurlardan biris olarak bilinmektedir. Fiber üzerinde hiyerarşik yapıdaki nano boyutta güçlendiriciler (örneğin: karbon nanotüpler (KNT’ler)), sahip oldukları sıradışı mekanik özellikler ve düşük yoğunlukları sayesinde kompozitlerin katmanlararası özelliklerini geliştirmek için kullanılmaktadır. Bahsedilen bu iyileştirmeler, yapıda herhangi bir ciddi ağırlık artışına sebep olmadan gerçekleştirilebilmektedir. Özellikle, yapısal iyileştirmelerin ağırlık artışından bağımsız olarak yapılması havacılık ve uzay yapıları uygulamalarının bir isteri olup, KNT’lere bu alanda geniş bir araştırma alanı oluşturmaktadır. Yapılan bu çalışmada, KNT-takviyeli GFRP’lerin mekanik özellikleri incelenmiştir. KNT’lerin epoksi matris içerisinde dağıtılması ve cam fiber üzerinde direkt olarak büyütülmesi olmak üzere iki farklı güçlendirme stratejisi ele alınmıştır. Bunlardan ilki cam fiber üzerinde karışık mimaride KNT büyütülmesi (F-GFs) olarak bilinirken, diğeri ise nano-tüp takviyeli kompozitler (NRC) olarak literatürde yer edinmiştir. Bu iki farklı güçlendirme stratejisinin kullanılmasıyla elde edilen kompozitler ise bu çalışmada karışık nano-takviyeli kompozitler (F-NRC) olarak ele alınmıştır. Bu çalışmanın odak noktası olarak F-GF ve F-NRC’ler seçilmiştir ve güçlendirme stratejilerinin potansiyeli laboratuvar ölçütlerinde deneysel olarak incelenmiştir. Üretilen kompozitlerin fiberleri üzerindeki hiyerarşik KNT yapılanması taramalı elektron mikroskopisi (SEM) ile gözlenmiştir. Ayrıca, Raman spektroskopisi ve termogravimetrik analiz (TGA) ile KNT’lerin kalitesi ve ısıl kararlılığı araştırılmıştır. Kompozitlerin mekanik özellikleri ise Mod-I kırılma tokluğu testi ve tek yönlü kompozit çekme testi ile karakterize edilmiştir. Her ne kadar F-NRC’lerin kırılma tokluğunda %150’lik iyileştirmeler gözlenmiş olsa da çekme dayanımında, cam fiberlerin KNT üretimi sırasında maruz kalınan ısıl işlemin sonucu olarak %25’lik azalma elde tespit edilmiştir. Mekanik testler sonucunda elde edilen bulgular, yukarıda belirtilen karakterizasyon çalışmalarından çıkarılan sonuçlar ile desteklenmektedir.
References
- An, Q., Rider, A. N., & Thostenson, E. T. (2012). Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon, 50(11), 4130–4143. https://doi.org/10.1016/j.carbon.2012.04.061
- An, Q., Tamrakar, S., Gillespie, J. W., Rider, A. N., & Thostenson, E. T. (2018). Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: Fiber and interphase characterization. Composites Science and Technology, 166, 131–139. https://doi.org/10.1016/J.COMPSCITECH.2018.01.003
- Arai, M., Noro, Y., Sugimoto, K. ichi, & Endo, M. (2008). Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 68(2), 516–525. https://doi.org/10.1016/j.compscitech.2007.06.007
- Ashrafi, B., Guan, J., Mirjalili, V., Zhang, Y., Chun, L., Hubert, P., … Johnston, A. (2011). Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Composites Science and Technology, 71(13), 1569–1578. https://doi.org/https://doi.org/10.1016/j.compscitech.2011.06.015
- Bilisik, K., & Sapanci, E. (2019). Plain para-aramid/phenolic multiwall carbon nanotubes prepreg/multistiched preform composites: Experimental characterization of mode-I toughness. Journal of Composite Materials, 53(13), 1847–1864. https://doi.org/10.1177/0021998318812176
- Boroujeni, A. Y., Tehrani, M., Manteghi, M., Zhou, Z., & Al-Haik, M. (2016). Electromagnetic Shielding Effectiveness of a Hybrid Carbon Nanotube/Glass Fiber Reinforced Polymer Composite. Journal of Engineering Materials and Technology, 138(4), 041001. https://doi.org/10.1115/1.4033576
- Cha, J., Jun, G. H., Park, J. K., Kim, J. C., Ryu, H. J., & Hong, S. H. (2017). Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Composites Part B: Engineering, 129, 169–179. https://doi.org/10.1016/j.compositesb.2017.07.070
- Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., & Vahid, S. (2015). Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale, 7(23), 10294–10329. https://doi.org/10.1039/C5NR01354B
- Falzon, B. G., Hawkins, S. C., Huynh, C. P., Radjef, R., & Brown, C. (2013). An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Composite Structures. https://doi.org/10.1016/j.compstruct.2013.05.051
- Feih, S., Manatpon, K., Mathys, Z., Gibson, A. G., & Mouritz, A. P. (2009). Strength degradation of glass fibers at high temperatures. Journal of Materials Science, 44(2), 392–400. https://doi.org/10.1007/s10853-008-3140-x
- Garcia, E. J., Wardle, B. L., John Hart, A., & Yamamoto, N. (2008). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology, 68(9), 2034–2041. https://doi.org/10.1016/j.compscitech.2008.02.028
- Gibson, R. F. (2010). A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures, 92(12), 2793–2810. https://doi.org/10.1016/j.compstruct.2010.05.003
- Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S. V, van Vuure, A. W., … Verpoest, I. (2009). Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon, 47(12), 2914–2923. https://doi.org/https://doi.org/10.1016/j.carbon.2009.06.039
- Gojny, F.H., Wichmann, M. H. G., Köpke, U., Fiedler, B., & Schulte, K. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 64(15), 2363–2371. https://doi.org/10.1016/J.COMPSCITECH.2004.04.002
- Gojny, F.H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W., & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36(11), 1525–1535. https://doi.org/10.1016/j.compositesa.2005.02.007
- Greenhalgh, E. S. B. T.-F. A. and F. of P. C. (Ed.). (2009). 4 - Delamination-dominated failures in polymer composites. In Woodhead Publishing Series in Composites Science and Engineering (pp. 164–237). https://doi.org/https://doi.org/10.1533/9781845696818.164
- Harris, B. (1999). Engineering composite materials. IoM London
- Jamnani, B. D., Hosseini, S., Rahmanian, S., Rashid, S. A., & Balavandy, S. K. (2015). Grafting carbon nanotubes on glass fiber by dip coating technique to enhance tensile and interfacial shear strength. Journal of Nanomaterials, 16(1), 306.
- Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., & Paipetis, A. (2009). Enhanced Fracture Properties of Carbon Reinforced Composites by the Addition of Multi-Wall Carbon Nanotubes. Journal of Composite Materials, 43, 977–985. https://doi.org/10.1177/0021998308097735
- Kawada, H., Sato, S., & Kameya, M. (2012). Modification of the Interface in Carbon Nanotube-Grafted T-Glass Fiber. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) (Vol. 3). https://doi.org/10.1115/IMECE2012-89318
- Kaynan, O., Atescan, Y., Ozden-Yenigun, E., & Cebeci, H. (2018). Mixed Mode delamination in carbon nanotube/nanofiber interlayered composites. Composites Part B: Engineering, 154(March), 186–194. https://doi.org/10.1016/j.compositesb.2018.07.032
- Kepple, K. L., Sanborn, G. P., Lacasse, P. A., Gruenberg, K. M., & Ready, W. J. (2008). Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon. https://doi.org/10.1016/j.carbon.2008.08.010
- Kim, J. A., Seong, D. G., Kang, T. J., & Youn, J. R. (2006). Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44(10), 1898–1905. https://doi.org/10.1016/J.CARBON.2006.02.026
- Lee, S.-H., Noguchi, H., Kim, Y.-B., & Cheong, S.-K. (2002). Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part II–Mode I. Journal of Composite Materials, 36(18), 2169–2181.
- Lehman, J. H., Terrones, M., Mansfield, E., Hurst, K. E., & Meunier, V. (2011). Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 49(8), 2581–2602. https://doi.org/10.1016/j.carbon.2011.03.028
- Li, M., Gu, Y., Liu, Y., Li, Y., & Zhang, Z. (2013). Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon, 52, 109–121. https://doi.org/10.1016/j.carbon.2012.09.011
- Li, R., Antunes, E. F., Kalfon-Cohen, E., Kudo, A., Acauan, L., Yang, W.-C. D., … Wardle, B. L. (2019). Low-Temperature Growth of Carbon Nanotubes Catalyzed by Sodium-based Ingredients. Angewandte Chemie International Edition, 1–7. https://doi.org/10.1002/anie.201902516
- Li, R., Lachman, N., Florin, P., Wagner, H. D., & Wardle, B. L. (2015). Hierarchical carbon nanotube carbon fiber unidirectional composites with preserved tensile and interfacial properties. Composites Science and Technology, 117, 139–145. https://doi.org/10.1016/j.compscitech.2015.04.014
- Mallick, P. K. (2007). Fiber-reinforced composites: materials, manufacturing, and design. CRC press.
- Meshot, E. R., Plata, D. L., Tawfick, S., Zhang, Y., Verploegen, E. A., & Hart, A. J. (2009). Engineering Vertically Aligned Carbon Nanotube Growth by Decoupled Thermal Treatment of Precursor and Catalyst. ACS Nano, 3(9), 2477–2486. https://doi.org/10.1021/nn900446a
- Qian, H., Bismarck, A., Greenhalgh, E. S., Kalinka, G., & Shaffer, M. S. P. (2008). Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chemistry of Materials, 20(5), 1862–1869. https://doi.org/10.1021/cm702782j
- Rahaman, A., & Kar, K. K. (2014). Carbon nanomaterials grown on E-glass fibers and their application in composite. Composites Science and Technology, 101, 1–10. https://doi.org/10.1016/J.COMPSCITECH.2014.06.019
- Sadeghian, R., Gangireddy, S., Minaie, B., & Hsiao, K.-T. (2006). Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A: Applied Science and Manufacturing, 37(10), 1787–1795. https://doi.org/https://doi.org/10.1016/j.compositesa.2005.09.010
- Storck, S., Malecki, H., Shah, T., & Zupan, M. (2011). Improvements in interlaminar strength: A carbon nanotube approach. Composites Part B: Engineering, 42(6), 1508–1516. https://doi.org/10.1016/j.compositesb.2011.04.039
- Thomason, J. L., Nagel, U., Yang, L., & Bryce, D. (2019). A study of the thermal degradation of glass fibre sizings at composite processing temperatures. Composites Part A: Applied Science and Manufacturing, 121(December 2018), 56–63. https://doi.org/10.1016/j.compositesa.2019.03.013
- Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., … Ghasemi-Nejhad, M. N. (2006). Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Materials, 5(6), 457–462. https://doi.org/10.1038/nmat1650
- Wang, Y., Raman Pillai, S. K., Che, J., & Chan-Park, M. B. (2017). High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber- and Matrix-Anchored Carbon Nanotube Networks. ACS Applied Materials and Interfaces, 9(10), 8960–8966. https://doi.org/10.1021/acsami.6b13197
- Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., … Verpoest, I. (2010). The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41(4), 532–538. https://doi.org/10.1016/j.compositesa.2010.01.001
- Wicks, S. S., de Villoria, R. G., & Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology, 70(1), 20–28. https://doi.org/10.1016/j.compscitech.2009.09.001
- Wicks, S. S., Wang, W., Williams, M. R., & Wardle, B. L. (2014). Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes. Composites Science and Technology, 100, 128–135. https://doi.org/10.1016/j.compscitech.2014.06.003
- Yamamoto, N., John Hart, A., Garcia, E. J., Wicks, S. S., Duong, H. M., Slocum, A. H., & Wardle, B. L. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon, 47(3), 551–560. https://doi.org/10.1016/j.carbon.2008.10.030
- Yokozeki, T., Iwahori, Y., Ishiwata, S., & Enomoto, K. (2007). Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Composites Part A: Applied Science and Manufacturing, 38(10), 2121–2130. https://doi.org/10.1016/j.compositesa.2007.07.002
- Zeiler, R., Kuttner, C., Khalid, U., Kothmann, M. H., & Dijkstra, D. J. (2016). Polyvinyl Alcohol-Modified Pithecellobium Clypearia Benth Herbal Residue FiberPolypropylene Composites. Polymer Composites, 37(1), 915–924. https://doi.org/10.1002/pc
- Zhang, H., Liu, Y., Kuwata, M., Bilotti, E., & Peijs, T. (2015). Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Composites Part A: Applied Science and Manufacturing, 70, 102–110. https://doi.org/10.1016/j.compositesa.2014.11.029
- Zhao, Z., Teng, K., Li, N., Li, X., Xu, Z., Chen, L., … Fu, H. (2017). Mechanical , thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix / interface. Composite Structures, 159, 761–772. https://doi.org/10.1016/j.compstruct.2016.10.022