Research Article
BibTex RIS Cite

Investigation of the Effect of Micro Beam Length Variation on Deformation

Year 2020, , 136 - 141, 15.04.2020
https://doi.org/10.31590/ejosat.672464

Abstract

In this study, the design and deformation analysis of the micro beam, which forms the basis of many micro-electro-mechanical-systems (MEMS), was carried out. The current passing through the micro beam distributes the heat energy by thermal expansion. This expansion varies depending on the current passing through the beam and the radiating temperature. For the model designed using COMSOL software, polycrystalline silicon material was assigned and necessary analyzes were performed. This material is a type of material that is frequently used in the field of MEMS due to its important physical and electrical properties. The support points on both ends of the modeled microbeam are firmly connected to a substrate. By applying 10V input potential to the model from these support points, deformation and temperature data emerging in the micro beam were examined. In experimental studies, deformations that occur by changing the length of the micro-beam assigned polycrystalline material have been reported. While a significant increase is observed between the deformation data that occurs in the models created by entering four different beam lengths (50 µm, 100 µm, 150 µm and 200 µm); temperature values are close to each other. The highest deformation for the polycrystalline silicon material was 2.01 µm in the 200 µm long micro beam; the lowest deformation was measured as 50 µm and 0.6 µm in length. Deformation values for micro beam lengths of 100 µm and 150 µm were measured as 0.93 µm and 1.41 µm, respectively. Temperature data was the lowest at 4890 K; measured as the highest 4940K. As a result, it has been observed that the change of beam length seriously affects the deformation properties of the micro beam design.

References

  • Arora, S., Arora, A., & George, P. J. (2012). Design of MEMS based microcantilever using comsol multihysics. International Journal of Applied Engineering Research, 7(11), 1-3.
  • Ashraf, M. W., Tayyaba, S., & Afzulpurkar, N. (2011). Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. International journal of molecular sciences, 12(6), 3648-3704.
  • Bernstein, J. J., Bancu, M. G., Cook, E. H., Chaparala, M. V., Teynor, W. A., & Weinberg, M. S. (2013). A MEMS diamond hemispherical resonator. Journal of Micromechanics and Microengineering, 23(12), 125007.
  • Cao, B. Y., Sun, J., Chen, M., & Guo, Z. Y. (2009). Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. International journal of molecular sciences, 10(11), 4638-4706.
  • Kamisuki, S., Fujii, M., Takekoshi, T., Tezuka, C., & Atobe, M. (2000, January). A high resolution, electrostatically-driven commercial inkjet head. In Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No. 00CH36308) (pp. 793-798).
  • Krylov, S., Seretensky, S., & Schreiber, D. (2008, January). Pull-in behavior and multistability of a curved microbeam actuated by a distributed electrostatic force. In 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems (pp. 499-502). Lee, K. W., Kanno, S., Kiyoyama, K., Fukushima, T., Tanaka, T., & Koyanagi, M. (2010). A cavity chip interconnection technology for thick MEMS chip integration in MEMS-LSI multichip module. Journal of Microelectromechanical Systems, 19(6), 1284-1291.
  • Nisar, A., Afzulpurkar, N., Mahaisavariya, B., & Tuantranont, A. (2008). MEMS-based micropumps in drug delivery and biomedical applications. Sensors and Actuators B: Chemical, 130(2), 917-942.
  • Reddy, V. M., & Kumar, G. S. (2013). Design and analysis of microcantilevers with various shapes using comsol multiphysics software. International Journal of Emerging Technology and Advanced Engineering, 3(3).
  • Zang, X., Zhou, Q., Chang, J., Liu, Y., & Lin, L. (2015). Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 132, 192-206.
  • Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. (2003). A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical systems, 12(5), 672-680.
  • Wang, B., Zhou, S., Zhao, J., & Chen, X. (2011). Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS. Journal of Micromechanics and microengineering, 21(2), 027001.

Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması

Year 2020, , 136 - 141, 15.04.2020
https://doi.org/10.31590/ejosat.672464

Abstract

Bu çalışmada birçok mikro-elektro-mekanik- sistemin (MEMS) temelini oluşturan mikro kirişin tasarımı ve analizi gerçekleştirilmiştir. Mikro kiriş içerisinden geçen akım, termal genleşme ile ısı enerjisini dağıtmaktadır. Bu genleşme, kiriş içerisinden geçen akım ve yayılan sıcaklığa bağlı olarak değişmektedir. COMSOL yazılımı kullanılarak tasarlanan model için polikristalin silikon malzeme ataması gerçekleştirilerek gerekli analizler yapılmıştır. Bu malzeme, önemli fiziksel ve elektriksel özellikleri nedeniyle MEMS alanında çok sık kullanılan bir malzeme türüdür. Oluşturulan mikro kirişin iki ucundaki destek noktaları bir substrata sıkıca bağlanır. Bu destek noktalarından modele 10V giriş potansiyeli uygulanarak mikro kirişte üretilen yer değiştirmeler ve sıcaklık verileri incelenmiştir. Sabit gerilim altında polikristalin malzeme için mikro kiriş uzunlukları değiştirilerek ortaya çıkan deformasyonlar rapor edilmiştir. Dört farklı kiriş uzunluğu (50 µm, 100 µm, 150 µm ve 200 µm) girilerek oluşturulan modellerde ortaya çıkan deformasyon verileri arasında ciddi bir artış gözlemlenirken sıcaklık değerleri birbirine yakın çıkmıştır. Polikristalin silikon malzeme için en yüksek deformasyon 200 µm uzunluğundaki mikro kirişte 2.01 µm iken; en düşük deformasyon 50 µm uzunluğunda 0.6 µm olarak ölçülmüştür. Sıcaklık verileri ise en düşük 4890 K iken; en yüksek 4940 K olarak ölçülmüştür. Sonuç olarak, mikro kiriş tasarımında kiriş uzunluğu değişiminin deformasyon özelliklerini ciddi bir biçimde etkilediği gözlemlenmiştir.

References

  • Arora, S., Arora, A., & George, P. J. (2012). Design of MEMS based microcantilever using comsol multihysics. International Journal of Applied Engineering Research, 7(11), 1-3.
  • Ashraf, M. W., Tayyaba, S., & Afzulpurkar, N. (2011). Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. International journal of molecular sciences, 12(6), 3648-3704.
  • Bernstein, J. J., Bancu, M. G., Cook, E. H., Chaparala, M. V., Teynor, W. A., & Weinberg, M. S. (2013). A MEMS diamond hemispherical resonator. Journal of Micromechanics and Microengineering, 23(12), 125007.
  • Cao, B. Y., Sun, J., Chen, M., & Guo, Z. Y. (2009). Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. International journal of molecular sciences, 10(11), 4638-4706.
  • Kamisuki, S., Fujii, M., Takekoshi, T., Tezuka, C., & Atobe, M. (2000, January). A high resolution, electrostatically-driven commercial inkjet head. In Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No. 00CH36308) (pp. 793-798).
  • Krylov, S., Seretensky, S., & Schreiber, D. (2008, January). Pull-in behavior and multistability of a curved microbeam actuated by a distributed electrostatic force. In 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems (pp. 499-502). Lee, K. W., Kanno, S., Kiyoyama, K., Fukushima, T., Tanaka, T., & Koyanagi, M. (2010). A cavity chip interconnection technology for thick MEMS chip integration in MEMS-LSI multichip module. Journal of Microelectromechanical Systems, 19(6), 1284-1291.
  • Nisar, A., Afzulpurkar, N., Mahaisavariya, B., & Tuantranont, A. (2008). MEMS-based micropumps in drug delivery and biomedical applications. Sensors and Actuators B: Chemical, 130(2), 917-942.
  • Reddy, V. M., & Kumar, G. S. (2013). Design and analysis of microcantilevers with various shapes using comsol multiphysics software. International Journal of Emerging Technology and Advanced Engineering, 3(3).
  • Zang, X., Zhou, Q., Chang, J., Liu, Y., & Lin, L. (2015). Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 132, 192-206.
  • Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. (2003). A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical systems, 12(5), 672-680.
  • Wang, B., Zhou, S., Zhao, J., & Chen, X. (2011). Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS. Journal of Micromechanics and microengineering, 21(2), 027001.
There are 11 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Osman Ülkir 0000-0001-8133-5889

İshak Ertugrul 0000-0001-9586-0377

Publication Date April 15, 2020
Published in Issue Year 2020

Cite

APA Ülkir, O., & Ertugrul, İ. (2020). Mikro Kiriş Uzunluğu Değişiminin Deformasyona Etkisinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(18), 136-141. https://doi.org/10.31590/ejosat.672464

Cited By

DESIGN AND MANUFACTURING OF 3D PRINTERED PROSTHETIC HAND USING MUSCLE SIGNALS
International Journal of Engineering and Innovative Research
Emre ARPAÇUKUROĞLU
https://doi.org/10.47933/ijeir.768552

MEMS TABANLI MİKRO-AKIŞKAN ÇİPİN ZAMANA BAĞLI BASINÇ ANALİZİ
International Journal of 3D Printing Technologies and Digital Industry
Osman ÜLKİR
https://doi.org/10.46519/ij3dptdi.744962

TITANIUM IMPLANT FOR DENTAL APPLICATIONS USING 3D PRINTING TECHNOLOGY
International Journal of 3D Printing Technologies and Digital Industry
Senai YALCİNKAYA
https://doi.org/10.46519/ij3dptdi.673652