Research Article
BibTex RIS Cite

Investigation of Caused by Shelling defects on Rail Surface via Metallographic Examination

Year 2020, , 1 - 18, 31.08.2020
https://doi.org/10.31590/ejosat.703669

Abstract

Railways are increasingly used for passenger and freight transportation worldwide. This increased traffic causes more quick and frequent formation of defects on train tracks. In this study, rail sets used in Bursa province, that had been reported to experience rapid wear and scaling, were examined. The rail sets were manufactured from R260 steel and the problem occurs more frequently on curves. For comparison, rail sets from straight lines were also examined. After visual examination, specimens from gauge and field corner regions were taken and prepared for metallographic examination. The microstructure of the specimens was examined under optical and scanning electron (SEM) microscopes. Moreover, Vickers micro-hardness tests were also performed. Micro-chemical analyses were performed using an energy dispersive X-ray spectroscopy (EDS) system attached to the SEM. For macro-chemical analysis, an optical emission spectrometer (OES) was used. The cross section of the rails was macro-etched for macro-examination. The results show that the microstructure of the rails is composed of 100% pearlite. On the other hand, the pearlitic structure degenerates at parts of the rail which are under loading. Due to severe plastic deformation, the pearlitic structure changes into a fiber-like structure composed of sub-micron ferrite and cementite. Those degenerated pearlitic regions have higher hardness due to strain hardening and cause crack initiation. Those cracks can then grow into inner sections of the rail easily due to the presence of non-metallic inclusions in the microstructure. Iron oxide particles were found in the vicinity of cracks; which indicate that cracks do not grow rapidly, they rather grow in time according to usage and atmospheric conditions. The examinations revealed that the wear, cracks and scaling problems were formed due to rolling contact fatigue (RCF). The presence of inclusions enhanced the growth of RCF-cracks and later cause “shelling”. In order to delay or prevent this problem, using higher strength rails at critical locations such as curves, controlling and rating the non-metallic inclusions in accordance with the international standards, checking the lubrication and maintenance strategies of rails and wheels, working on optimization of rail-wheel contact characteristics are recommended. The last recommendation involves developing a sustainable model by identifying technical limitations of the line and cruise depending on vehicle characteristics.

References

  • A. Uğur, “Demiryolu Sektöründe Dünya Gelişme Beklentileri ve Türkiye’nin Durumunun Araştırılması”, Alphanumeric Journal, vol. 7 (2), 369-398, 2019.
  • J. Xu, L. J. Butler, & M. Z. Elshafie, “Experimental and numerical investigation of the performance of self-sensing concrete sleepers”, Structural Health Monitoring, vol. 19, no. 1, 66-85, 2020.
  • J. Jiang, Z. Chen, W. Zhai, T. Zhang, & Y. Li, “Vibration characteristics of railway locomotive induced by gear tooth root crack fault under transient conditions”, Engineering Failure Analysis, vol. 108, 104285, 2020.
  • L. Ferreira, & M. H. Murray, “Modelling rail track deterioration and maintenance: current practices and future needs”, Transport Reviews, vol. 17, no. 3, 207-221, 1997.
  • J.-A. Zakeri, M. Fathali, & N. B. R, “Effects of Rail Cant on Wheel-Rail Contact Forces in Slab Tracks”, International Journal of Mechanics and Applications, vol. 1(1), 12-21, 2011.
  • H. Jiang, & L. Gao, “Optimizing the Rail Profile for High-Speed Railways Based on Artificial Neural Network and Genetic Algorithm Coupled Method”, Sustainability, vol. 12, no. 2, 658, 2020.
  • C. He, J. Liu, W. Wang, & Q. Liu, “The Tribo-Fatigue Damage Transition and Mapping for Wheel Material under Rolling-Sliding Contact Condition”, Materials, vol. 12, no. 24, 4138, 2019.
  • R. Chen, C. Hu, J. Xu, P. Wang, J. Chen, & Y. Gao, “An Innovative and Efficient Method for Reverse Design of Wheel-Rail Profiles”, Applied Sciences, vol. 8, no. 2, 239, 2018.
  • R. Lewis, & U. Olofsson, "Wheel-rail interface handbook", India, USA: Woodhead Publishing Limited and CRC Press LLC, 2009.
  • D. F. Cannon, K. O. Edel, S. L. Grassie, & K. Sawley, “Rail defects: an overview”, Fatigue & Fracture of Engineering Materials & Structures, vol. 26, no. 10, 865-886, 2003.
  • U. Zerbst, R. Lundén, K. O. Edel, & R. A. Smith, “Introduction to the damage tolerance behaviour of railway rails – a review”, Engineering Fracture Mechanics, vol. 76, no. 17, 2563-2601, 2009.
  • R. Masoudi Nejad, K. Farhangdoost, & M. Shariati, “Microstructural analysis and fatigue fracture behavior of rail steel”, Mechanics of Advanced Materials and Structures, vol. 27, no. 2, 152-164, 2020.
  • D. Mansouri, P. Sendur, & G. G. Yapici, “Fatigue characteristics of continuous welded rails and the effect of residual stress on fatigue-ratchetting interaction”, Mechanics of Advanced Materials and Structures, 1-8, 2018.
  • P. Gurubaran, M. Afendi, M. A. Nur Fareisha, M. S. Abdul Majid, I. Haftirman, & M. T. A. Rahman, “Fatigue life investigation of UIC 54 rail profile for high speed rail”, Journal of Physics: Conference Series, vol. 908, 012026, 2017.
  • V. Arli, Demiryolu Mühendisliği, İstanbul: Marmara Kırtasiye ve Yayıncılık, 2015.
  • M. Jimenez-Martinez, “Manufacturing effects on fatigue strength”, Engineering Failure Analysis, vol. 108, 104339, 2020.
  • J. Sadeghi, & H. Askarinejad, “Influences of Track Structure, Geometry and Traffic Parameters on Railway Deterioration”, International Journal of Engineering, vol. 20, no. 3, 292-300, 2007.
  • A. K. Wilson, M., TMS 226 RailCorp Engineering Manual - Track Rail Defects Handbook, RailCorp Network, 1-83, 2012.
  • Z. Li, D. Yi, C. Tan, & B. Wang, “Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types”, Journal of Alloys and Compounds, vol. 817, 152690, 2020.
  • F. Wu, Q. Li, S. Li, & T. Wu, “Train rail defect classification detection and its parameters learning method”, Measurement, vol. 151, 107246, 2020.
  • C. Taştimur, Karaköse. M, & Akın, E, “ A comparison study of rail fault detection methods in the literature”, in International Conference on Advances and Innovations in Engineering, 987-992, 2017.
  • A. D. Sara.Teidj, Abdellatif. Khamlichi, “Detection of Damage in Rail Head by using Safe Method”, Transactions on Machine Learning and Artificial Intelligence, vol. 5, no. 4, 2017.
  • A. R. Khan, Y. Shengfu, & H. Wang, “Influence of Heat Input and Preheating on Microstructure and Mechanical Properties of Coarse Grain Heat-Affected Zone of Metal Arc Gas-Welded Pearlitic Rail Steel”, Journal of Materials Engineering and Performance, vol. 28, no. 12, 7676-7686, 2019.
  • S. Khoddam, A. H. Shamdani, P. Mutton, R. Ravitharan, J. H. Beynon, & A. Kapoor, “A new test to study the cyclic hardening behaviour of a range of high strength rail materials”, Wear, vol. 313, no. 1, 43-52, 2014.
  • C. Jessop, J. Ahlström, C. Persson, & Y. Zhang, “Damage evolution around white etching layer during uniaxial loading”, Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 1, 201-208, 2020.
  • M. Aquib Anis, J. P. Srivastava, N. R. Duhan, & P. K. Sarkar, “Rolling contact fatigue and wear in rail steels: An overview”, IOP Conference Series: Materials Science and Engineering, vol. 377, 012098, 2018.
  • M. Hiensch, & M. Steenbergen, “Rolling Contact Fatigue on premium rail grades: Damage function development from field data”, Wear, vol. 394-395, 187-194, 2018.
  • S. R. Lewis, S. Fretwell-Smith, P. S. Goodwin, L. Smith, R. Lewis, M. Aslam, D. I. Fletcher, K. Murray, & R. Lambert, “Improving rail wear and RCF performance using laser cladding”, Wear, vol. 366-367, 268-278, 2016.
  • UIC-712 R, “Rail defects”, International Union of Railways (UIC), UIC, Paris, Fransa, 2002.
  • Australian Rail Track Corporation Ltd., “Manual for non-destructive testing of rail”, ARTC, Avustralya, 2009.
  • Australian Rail Track Corporation Ltd., “Some Rail Defects, their Characteristics, Causes and Control”, Rail Defects Handbook, RC 2400, ARTC, Avustralya, 2006.
  • T. Kato, H. Kato, & T. Makino, “Effect of elevated temperature on shelling property of railway wheel steel”, Wear, vol. 366-367, 359-367, 2016.
  • UIC-860 R, “Technical specification for the supply rail”, International Union of Railways (UIC), UIC, Paris, Fransa, 2008.
  • D. Benoît, B. Salima, and R. Marion, “Multiscale characterization of head check initiation on rails under rolling contact fatigue: Mechanical and microstructure analysis”, Wear, vol. 366-367, 383-391, 2016.
  • A. E. L. P. R. S. Sections, “Grooved Rails for Tramways Technical Manual”, ArcelorMittal Commercial RPS, Lüksemburg, 2018.
  • J. Xu, P. Wang, L. Wang, & R. Chen, "Effects of profile wear on wheel–rail contact conditions and dynamic interaction of vehicle and turnout", Advances in mechanical Engineering, 8(1), 1-14, 2016.
  • J. Ahlstrom, B. Karlsson, "Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats", Wear, vol. 232, 1–14, 1999.
  • G. G. Knupp, W. H. Chidley, J. L. Giove, H. H. Martman, G. F. Morris, C. W. Taylor, "A Review of the Manufacture, Processing, and Use of Rail Steels in North America", A Report of AISI Technical Subcommittee on Rails and Accessories In Rail Steels, -Developments, Processing, and Use. ASTM International, 1978.
  • R. K. Steele, “Rail: Its behaviour and Relationship to Total System” Wear, 2nd Heavy Haul Railways Conf. Proc. Colorado, 115-165, 1982.
  • H. Muster, H. Schmedders, K. Wick, & H. Pradier, “Rail rolling contact fatigue. The performance of naturally hard and head-hardened rails in track”, Wear, vol. 191, 54-64, 1996.
  • M. Tomičić-Torlaković, “Guidelines for the rail grade selection”, Metalurgija, 53(4), 717-720, 2014.
  • P. J. Bolton, P. Clayton, I. J. McEwen, “Wear of Rail and Tyre Steels under Rolling/Sliding Conditions”, ASLE Transactions, Vol. 25, No. 1, 17-24, 1982.
  • A. Melander, “A finite element study of short cracks with different inclusion types under rolling contact fatigue load”, International Journal of Fatigue, 19(1), 13-24, 1997.
  • Y. Neishi, T. Makino, N. Matsui, H. Matsumoto, M., Higashida & H. Ambai, “Influence of the inclusion shape on the rolling contact fatigue life of carburized steels”, Metallurgical and Materials Transactions A, 44(5), 2131-2140, 2013.
  • P.A. Cuervo, J. F. Santa, A. Toro. “Correlations between wear mechanisms and rail grinding operations in a commercial railroad”, Tribology International, 82, 265-273, 2015.
  • D. F., Cannon, H. Pradier, “Rail rolling contact fatigue”, Research by the European Rail Research Institute, International Journal of Fatigue, 10(19), 722, 1997.

Metalografik İncelemelerle Ray Yüzeyindeki Soyulmaların Nedeninin Araştırılması

Year 2020, , 1 - 18, 31.08.2020
https://doi.org/10.31590/ejosat.703669

Abstract

Demiryolları yolcu ve yük taşımacılığında dünya genelinde giderek artarak kullanılmaktadır. Bu artan trafik aynı zamanda tren raylarında kusurların daha çabuk ve daha sık görülmesine neden olmaktadır. Bu çalışmada Bursa ilinde kullanılan ve hızlı aşınarak parça kopmaları problemi yaşanan ray setleri incelenmiştir. R260 kalite çelikten imal edilen rayların özellikle kurp bölgesinde problem daha çok görülmektedir. Karşılaştırma yapılabilmesi için daha az sorun yaşanan düz hat bölgesinden alınan raylar da incelenmiştir. Problem yaşanan ray parçalarının yüzeyleri incelendikten sonra ray profilinin mantar bölgesi, yanak (gauge ve field corner) yüzeylerinden numuneler çıkarılarak metalografik inceleme için hazırlanmıştır. Hazırlanan numunelerin mikroyapıları optik mikroskop ve taramalı elektron mikroskobu (SEM) altında incelenmiş, ayrıca Vickers mikro-sertlik testleri yapılmıştır. Taramalı elektron mikroskobuna bağlı enerji dağılımlı X-ışınları spektrometresi (EDS) kullanılarak numuneler üzerinde mikro-kimyasal analizler gerçekleştirilmiştir. Makro-kimyasal analizler için optik emisyon spektrometresi (OES) kullanılmıştır. Ray kesitlerine makro-dağlama yapılarak genel yapı (makro-yapı) kontrol edilmiştir. Yapılan incelemeler sonucunda ray kesitlerinin %100 perlitten oluştuğu, öte yandan yük altında olan yanak bölgesinde ise aşırı deformasyon nedeniyle perlit yapısının bozulduğu gözlemlenmiştir. Perlitik yapı aşırı deformasyon etkisiyle mikron altı büyüklüklerde ferrit ve sementite dönüşerek lifli bir yapı halini almıştır. Deformasyon sonucu pekleşen bu yapı çatlak başlangıcına neden olmuştur. Aynı zamanda yapıda bulunan metal dışı kalıntılar (inklüzyon) çatlakların ray içine doğru ilerlemesini kolaylaştırmış ve sonrasında parça kopmalarına neden olmuştur. Çatlakların etrafında demir-oksit partiküllerine rastlanmıştır. Bu durum çatlakların, aniden ilerlemediğini, zaman içinde kullanıma ve atmosfer koşullarına bağlı olarak ilerlediğini göstermektedir. Ray malzemelerinin kimyasal kompozisyonları ve sertlik değerleri R260 kalite için izin verilen aralık içinde bulunmuştur. Teker teması olan bölgeler aşırı plastik deformasyon nedeniyle pekleşmiş ve sertlik değerleri diğer bölgelere göre yüksek çıkmıştır. Yapılan incelemeler sonucunda raylarda aşınma, soyulma ve parça kopması probleminin yuvarlanma temas yorulması (Rolling contract fatigue- RCF) nedeniyle oluştuğu ve çelik yapısında tespit edilen çok sayıda metal dışı kalıntının (inklüzyon) da RCF sırasında oluşan çatlakların ilerlemesini kolaylaştırdığı ve de soyulmalara (shelling) neden olduğu sonucuna varılmıştır. Problemin oluşumunun geciktirilmesi veya önlenmesi için kurb gibi kritik yerlerde daha yüksek dayanımlı rayların kullanılması, kullanılan ray çeliklerinde uluslararası standartlara uygun olarak inklüzyon kontrolü yapılması, teker ve rayların yağlanma ve bakım stratejilerinin gözden geçilmesi, teker-ray temas karakteristiklerinin iyileştirilmesine yönelik çalışmalar yapılması önerilmektedir. Son öneriye yönelik çalışmalar hat ve seyirle ilgili teknik sınırların araç özelliklerine bağlı olarak çıkartılarak sürdürülebilir bir model geliştirilmesini içermektedir.

References

  • A. Uğur, “Demiryolu Sektöründe Dünya Gelişme Beklentileri ve Türkiye’nin Durumunun Araştırılması”, Alphanumeric Journal, vol. 7 (2), 369-398, 2019.
  • J. Xu, L. J. Butler, & M. Z. Elshafie, “Experimental and numerical investigation of the performance of self-sensing concrete sleepers”, Structural Health Monitoring, vol. 19, no. 1, 66-85, 2020.
  • J. Jiang, Z. Chen, W. Zhai, T. Zhang, & Y. Li, “Vibration characteristics of railway locomotive induced by gear tooth root crack fault under transient conditions”, Engineering Failure Analysis, vol. 108, 104285, 2020.
  • L. Ferreira, & M. H. Murray, “Modelling rail track deterioration and maintenance: current practices and future needs”, Transport Reviews, vol. 17, no. 3, 207-221, 1997.
  • J.-A. Zakeri, M. Fathali, & N. B. R, “Effects of Rail Cant on Wheel-Rail Contact Forces in Slab Tracks”, International Journal of Mechanics and Applications, vol. 1(1), 12-21, 2011.
  • H. Jiang, & L. Gao, “Optimizing the Rail Profile for High-Speed Railways Based on Artificial Neural Network and Genetic Algorithm Coupled Method”, Sustainability, vol. 12, no. 2, 658, 2020.
  • C. He, J. Liu, W. Wang, & Q. Liu, “The Tribo-Fatigue Damage Transition and Mapping for Wheel Material under Rolling-Sliding Contact Condition”, Materials, vol. 12, no. 24, 4138, 2019.
  • R. Chen, C. Hu, J. Xu, P. Wang, J. Chen, & Y. Gao, “An Innovative and Efficient Method for Reverse Design of Wheel-Rail Profiles”, Applied Sciences, vol. 8, no. 2, 239, 2018.
  • R. Lewis, & U. Olofsson, "Wheel-rail interface handbook", India, USA: Woodhead Publishing Limited and CRC Press LLC, 2009.
  • D. F. Cannon, K. O. Edel, S. L. Grassie, & K. Sawley, “Rail defects: an overview”, Fatigue & Fracture of Engineering Materials & Structures, vol. 26, no. 10, 865-886, 2003.
  • U. Zerbst, R. Lundén, K. O. Edel, & R. A. Smith, “Introduction to the damage tolerance behaviour of railway rails – a review”, Engineering Fracture Mechanics, vol. 76, no. 17, 2563-2601, 2009.
  • R. Masoudi Nejad, K. Farhangdoost, & M. Shariati, “Microstructural analysis and fatigue fracture behavior of rail steel”, Mechanics of Advanced Materials and Structures, vol. 27, no. 2, 152-164, 2020.
  • D. Mansouri, P. Sendur, & G. G. Yapici, “Fatigue characteristics of continuous welded rails and the effect of residual stress on fatigue-ratchetting interaction”, Mechanics of Advanced Materials and Structures, 1-8, 2018.
  • P. Gurubaran, M. Afendi, M. A. Nur Fareisha, M. S. Abdul Majid, I. Haftirman, & M. T. A. Rahman, “Fatigue life investigation of UIC 54 rail profile for high speed rail”, Journal of Physics: Conference Series, vol. 908, 012026, 2017.
  • V. Arli, Demiryolu Mühendisliği, İstanbul: Marmara Kırtasiye ve Yayıncılık, 2015.
  • M. Jimenez-Martinez, “Manufacturing effects on fatigue strength”, Engineering Failure Analysis, vol. 108, 104339, 2020.
  • J. Sadeghi, & H. Askarinejad, “Influences of Track Structure, Geometry and Traffic Parameters on Railway Deterioration”, International Journal of Engineering, vol. 20, no. 3, 292-300, 2007.
  • A. K. Wilson, M., TMS 226 RailCorp Engineering Manual - Track Rail Defects Handbook, RailCorp Network, 1-83, 2012.
  • Z. Li, D. Yi, C. Tan, & B. Wang, “Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types”, Journal of Alloys and Compounds, vol. 817, 152690, 2020.
  • F. Wu, Q. Li, S. Li, & T. Wu, “Train rail defect classification detection and its parameters learning method”, Measurement, vol. 151, 107246, 2020.
  • C. Taştimur, Karaköse. M, & Akın, E, “ A comparison study of rail fault detection methods in the literature”, in International Conference on Advances and Innovations in Engineering, 987-992, 2017.
  • A. D. Sara.Teidj, Abdellatif. Khamlichi, “Detection of Damage in Rail Head by using Safe Method”, Transactions on Machine Learning and Artificial Intelligence, vol. 5, no. 4, 2017.
  • A. R. Khan, Y. Shengfu, & H. Wang, “Influence of Heat Input and Preheating on Microstructure and Mechanical Properties of Coarse Grain Heat-Affected Zone of Metal Arc Gas-Welded Pearlitic Rail Steel”, Journal of Materials Engineering and Performance, vol. 28, no. 12, 7676-7686, 2019.
  • S. Khoddam, A. H. Shamdani, P. Mutton, R. Ravitharan, J. H. Beynon, & A. Kapoor, “A new test to study the cyclic hardening behaviour of a range of high strength rail materials”, Wear, vol. 313, no. 1, 43-52, 2014.
  • C. Jessop, J. Ahlström, C. Persson, & Y. Zhang, “Damage evolution around white etching layer during uniaxial loading”, Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 1, 201-208, 2020.
  • M. Aquib Anis, J. P. Srivastava, N. R. Duhan, & P. K. Sarkar, “Rolling contact fatigue and wear in rail steels: An overview”, IOP Conference Series: Materials Science and Engineering, vol. 377, 012098, 2018.
  • M. Hiensch, & M. Steenbergen, “Rolling Contact Fatigue on premium rail grades: Damage function development from field data”, Wear, vol. 394-395, 187-194, 2018.
  • S. R. Lewis, S. Fretwell-Smith, P. S. Goodwin, L. Smith, R. Lewis, M. Aslam, D. I. Fletcher, K. Murray, & R. Lambert, “Improving rail wear and RCF performance using laser cladding”, Wear, vol. 366-367, 268-278, 2016.
  • UIC-712 R, “Rail defects”, International Union of Railways (UIC), UIC, Paris, Fransa, 2002.
  • Australian Rail Track Corporation Ltd., “Manual for non-destructive testing of rail”, ARTC, Avustralya, 2009.
  • Australian Rail Track Corporation Ltd., “Some Rail Defects, their Characteristics, Causes and Control”, Rail Defects Handbook, RC 2400, ARTC, Avustralya, 2006.
  • T. Kato, H. Kato, & T. Makino, “Effect of elevated temperature on shelling property of railway wheel steel”, Wear, vol. 366-367, 359-367, 2016.
  • UIC-860 R, “Technical specification for the supply rail”, International Union of Railways (UIC), UIC, Paris, Fransa, 2008.
  • D. Benoît, B. Salima, and R. Marion, “Multiscale characterization of head check initiation on rails under rolling contact fatigue: Mechanical and microstructure analysis”, Wear, vol. 366-367, 383-391, 2016.
  • A. E. L. P. R. S. Sections, “Grooved Rails for Tramways Technical Manual”, ArcelorMittal Commercial RPS, Lüksemburg, 2018.
  • J. Xu, P. Wang, L. Wang, & R. Chen, "Effects of profile wear on wheel–rail contact conditions and dynamic interaction of vehicle and turnout", Advances in mechanical Engineering, 8(1), 1-14, 2016.
  • J. Ahlstrom, B. Karlsson, "Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats", Wear, vol. 232, 1–14, 1999.
  • G. G. Knupp, W. H. Chidley, J. L. Giove, H. H. Martman, G. F. Morris, C. W. Taylor, "A Review of the Manufacture, Processing, and Use of Rail Steels in North America", A Report of AISI Technical Subcommittee on Rails and Accessories In Rail Steels, -Developments, Processing, and Use. ASTM International, 1978.
  • R. K. Steele, “Rail: Its behaviour and Relationship to Total System” Wear, 2nd Heavy Haul Railways Conf. Proc. Colorado, 115-165, 1982.
  • H. Muster, H. Schmedders, K. Wick, & H. Pradier, “Rail rolling contact fatigue. The performance of naturally hard and head-hardened rails in track”, Wear, vol. 191, 54-64, 1996.
  • M. Tomičić-Torlaković, “Guidelines for the rail grade selection”, Metalurgija, 53(4), 717-720, 2014.
  • P. J. Bolton, P. Clayton, I. J. McEwen, “Wear of Rail and Tyre Steels under Rolling/Sliding Conditions”, ASLE Transactions, Vol. 25, No. 1, 17-24, 1982.
  • A. Melander, “A finite element study of short cracks with different inclusion types under rolling contact fatigue load”, International Journal of Fatigue, 19(1), 13-24, 1997.
  • Y. Neishi, T. Makino, N. Matsui, H. Matsumoto, M., Higashida & H. Ambai, “Influence of the inclusion shape on the rolling contact fatigue life of carburized steels”, Metallurgical and Materials Transactions A, 44(5), 2131-2140, 2013.
  • P.A. Cuervo, J. F. Santa, A. Toro. “Correlations between wear mechanisms and rail grinding operations in a commercial railroad”, Tribology International, 82, 265-273, 2015.
  • D. F., Cannon, H. Pradier, “Rail rolling contact fatigue”, Research by the European Rail Research Institute, International Journal of Fatigue, 10(19), 722, 1997.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Alper Uğur 0000-0002-8310-8839

Kemal Davut 0000-0002-9860-881X

Rasim Bacacı This is me 0000-0002-8588-4946

Publication Date August 31, 2020
Published in Issue Year 2020

Cite

APA Uğur, A., Davut, K., & Bacacı, R. (2020). Metalografik İncelemelerle Ray Yüzeyindeki Soyulmaların Nedeninin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(19), 1-18. https://doi.org/10.31590/ejosat.703669