Research Article
BibTex RIS Cite

Estimation Of CO2 Equivalent Greenhouse Gas Emissions In Turkey By Artificial Neural Networks And Exponential Smoothing Method

Year 2020, , 282 - 289, 31.08.2020
https://doi.org/10.31590/ejosat.705666

Abstract

The amount of greenhouse gases in the atmosphere is increasing day by day. This increase is caused primarily by global warming, resulting in numerous negative effects. Predicting future greenhouse gas emissions can be encouraging, especially in terms of decision makers and sectors with a share in CO2 emissions, to reduce this emission and to seek alternative sources. Time series is the name in the literature of the data obtained regularly at regular intervals on the time plane, and the processes that examine how these series are analyzed are called time series analysis. The study used a data set containing 55 years of data from the World Bank database containing the greenhouse gas emissions (CO2 equivalent) values of Turkey. It is aimed to obtain useful patterns from this data set with artificial neural networks and exponential smoothing methods. The data set, which was converted to time series format for analysis, was then divided into two parts as training and test data. The training data in the time series type was analyzed using Holt's linear trend model, which is based on the exponential smoothing method, and artificial neural networks (NSA), which is one of the sub-branches of artificial intelligence. As a result of these analyses, prediction models were obtained based on training and test data. Assessment metrics such as RMSE, MAPE were obtained to evaluate the models with the predictions of ANN and Holt's linear trend method. According to these values, two models were compared and it was determined that the model with the least error rate was ANN. According to the findings obtained in the study, YSA has RMSE value of 0.1607 and it has a much lower error rate compared to Holt's linear trend method. After finding that the YSA would make more accurate predictions, estimates were obtained by 2021 using the model proposed by this method. The Model estimated Turkey's greenhouse gas equivalent to CO2 emissions in 2021 at 366,3972 million tons. Another result seen in the research is that CO2 emissions follow a fluctuating course but tend to increase in general.

References

  • Aydemir, E. (2019). Ders Geçme Notlarının Veri Madenciliği Yöntemleriyle Tahmin Edilmesi. European Journal of Science and Technology, (15), 70–76. https://doi.org/10.31590/ejosat.518899
  • Baki, Ö. (2017). Karbondioksit emisyon hacminin alt sektörler için analizi : Türkiye örneği. NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ. Retrieved from https://tez.yok.gov.tr/
  • Bender, M., Sowers, T., & Brook, E. (1997). Gases in ice cores. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8343–8349. https://doi.org/10.1073/pnas.94.16.8343
  • Cambridge. (2020). Cambridge English Dictionary. Retrieved March 9, 2020, from https://dictionary.cambridge.org/dictionary/english/carbon-dioxide
  • Cheremisinoff, N. P. (2011). Pollution Management and Responsible Care. In Waste (pp. 487–502). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381475-3.10031-2
  • Çoban, O., & Şahbaz, N. (2015). Yenilenebilir Enerji Tüketimi Karbon ve Emisyonu İlişkisi: TR Örneği. Erciyes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Erciyes Üniversitesi Sosyal Bilimler Enstitüsü, 38039 KAYSERİ: Erciyes Üniversitesi.
  • de Mattos Neto, P. S. G., Cavalcanti, G. D. C., Firmino, P. R. A., Silva, E. G., & Vila Nova Filho, S. R. P. (2020). A temporal-window framework for modelling and forecasting time series. Knowledge-Based Systems, 193, 105476. https://doi.org/10.1016/J.KNOSYS.2020.105476
  • Deppa, B. (2018). Holt’s Linear Trend Methods. Retrieved April 28, 2020, from http://course1.winona.edu/bdeppa/FIN 335/Handouts/Exponential_Smoothing (part 2).html#holts-linear-trend-method
  • Dertli, G., & Yinaç, P. (2018). Yenilenebilir Enerji Tüketimi, Karbondioksit Emisyonu, Enerji İthalatı ve Ekonomik Büyüme: Türkiye Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, 15(2), 583–606. Retrieved from https://dergipark.org.tr/tr/pub/ksusbd/issue/40204/446928
  • Efe, M. Ö., & Kaynak, O. (2000). Yapay Sinir Ağları ve Uygulamaları (1st ed.). İstanbul, Türkiye: Bogazici University.
  • Genceli, M. (2012). Trend Oluşturulmasına İlişkin Bazı Sorunlar. İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 35(1–4). Retrieved from https://dergipark.org.tr/en/pub/iuifm/issue/849/9416
  • Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015
  • Keeling, C. D. (1997). Climate change and carbon dioxide: an introduction. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8273–8274. https://doi.org/10.1073/pnas.94.16.8273
  • Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks. IEEE Access, 6, 32328–32338. https://doi.org/10.1109/ACCESS.2018.2837692
  • Lead, C.-O., Lead, I. C. P., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., … Rojas, A. R. (2018). The Carbon Cycle and Atmospheric Carbon Dioxide. Livshin, I. (2019). Artificial Neural Networks with Java: Tools for Building Neural Network Applications. Apress.
  • M, C., Pandit, P., & Bakshi, B. (2019). Forecasting Of Area And Production Of Cashew Nut In Dakshına Kannada Using Arima And Exponential Smoothing Models. Journal of Reliability and Statistical Studies, 12(2), 61–76.
  • Molina, M. E., Perez, A., & Valente, J. P. (2016). Classification of auditory brainstem responses through symbolic pattern discovery. Artificial Intelligence in Medicine. https://doi.org/10.1016/j.artmed.2016.05.001
  • Nordhaus, W. D. (1977). Economic Growth and Climate: The Carbon Dioxide Problem. The American Economic Review, 67(1), 341–346. Retrieved from http://www.jstor.org/stable/1815926
  • Öztemel, E. (2012). Yapay Sinir Ağları. (3, Ed.). İstanbul, Türkiye: Papatya Yayıncılık.
  • Park, S. E., Chang, J. S., & Lee, K. W. (2004). Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th International Conference on Carbon Dioxide Utilization, Seoul, Korea, October 12-16, 2003. Elsevier Science.
  • Rhys, I. H. (2020). Machine Learning with R, the tidyverse, and mlr. Manning Publications.
  • Shmueli, G., & Lichtendahl, K. C. (2016). Practical Time Series Forecasting with R: A Hands-On Guide [2nd Edition]. Axelrod Schnall Publishers.
  • Sun, Y. H. (2004). Chemicals from CO2 via heterogeneous catalysis at moderate conditions. In Park, SE and Chang, JS and Lee, KW (Ed.), CARBON DIOXIDE UTILIZATION FOR GLOBAL SUSTAINABILITY (Vol. 153, pp. 9–16). SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS: ELSEVIER SCIENCE BV.
  • The R Foundation. (2020). R: What is R? Retrieved March 13, 2020, from https://www.r-project.org/about.html
  • Thomson, D. J. (1997). Dependence of global temperatures on atmospheric CO<sub>2</sub> and solar irradiance. Proceedings of the National Academy of Sciences, 94(16), 8370 LP – 8377. https://doi.org/10.1073/pnas.94.16.8370
  • U.S. Environmental Protection Agency. (2019). US EPA. Retrieved March 10, 2020, from https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&glossaryName=Glossary Climate Change Terms
  • World Bank Group. (2020). World Development Indicators | DataBank. Retrieved April 28, 2020, from https://databank.worldbank.org/reports.aspx?source=2&series=EN.CO2.OTHX.ZS&country=
  • Yao, J., Wang, P., Wang, G., Shrestha, S., Xue, B., & Sun, W. (2020). Establishing a time series trend structure model to mine potential hydrological information from hydrometeorological time series data. Science of The Total Environment, 698, 134227. https://doi.org/10.1016/J.SCITOTENV.2019.134227
  • Yapar, G., Capar, S., Selamlar, H. T., & Yavuz, I. (2018). Modified holt’s linear trend method. Hacettepe Journal of Mathematics and Statistics, 47(5), 1394–1403. https://doi.org/10.15672/HJMS.2017.493
  • Zhang, Z. Q. (2003). Mites of Greenhouses: Identification, Biology and Control. CABI Pub.

Yapay Sinir Ağları ve Üstel Düzleştirme Yöntemi ile Türkiye’deki CO2 Emisyonunun Zaman Serisi ile Tahmini

Year 2020, , 282 - 289, 31.08.2020
https://doi.org/10.31590/ejosat.705666

Abstract

Sera gazlarının atmosferdeki miktarı gün geçtikçe artmaktadır. Bu artışın başta küresel ısınma olmak üzere neden olduğu çok sayıda olumsuz etki ortaya çıkmaktadır. Geleceğe dönük sera gazı emisyonunun tahminlenmesi özellikle karar alıcılar ve CO2 salınımında payı olan sektörler açısından bakıldığında bu salınımın azaltılması ve alternatif kaynakların aranması için cesaret verici olabilir. Zaman serileri zaman düzleminde düzenli olarak belirli aralıklarla elde edilmiş verilerin literatürdeki adıdır ve bu serilerin analizinin nasılını inceleyen süreçlere ise zaman serisi analizi denir. Araştırmada Türkiye’ye ait sera gazı emisyonu (CO2 eşdeğeri) değerlerini içeren Dünya Bankası veri tabanındaki 55 yıllık verileri içeren veri seti kullanımıştır. Bu veri seti içerisinden yapay sinir ağları ve üstel düzleştirme yöntemleri ile faydalı örüntüler elde edilmesi amaçlanmıştır. Analizler için zaman serisi formatına dönüştürülen veri seti daha sonra eğitim ve test verisi olarak iki bölüme ayrılmıştır. Zaman serisi tipindeki eğitim verileri üstel düzleştirme yöntemini temel alan Holt’un lineer trend modeli ve yapay zekanın alt dallarından biri olan yapay sinir ağları (YSA) ile analizi edilmiştir. Bu analizler sonucunda ortaya çıkan modellere göre eğitim ve test verileri üzerinden tahmin modelleri elde edilmiştir. YSA’nın ve Holt’un lineer trend yönteminin test verileri için ortaya koyduğu tahminler ile modelleri değerlendirmek için RMSE, MAPE gibi değerlendirme metrikleri elde edilmiştir. Bu değerlere göre iki model karşılaştırılmış ve en az hata oranına sahip modelin YSA olduğu tespit edilmiştir. Çalışmada elde edilen bulgulara göre YSA 0.1607’lik RMSE değeri ile, Holt’un liner trend yöntemine göre çok daha az hata oranına sahiptir. YSA’nın daha doğru tahminler yapacağı bulgusu elde edildikten sonra bu yöntemin önerdiği model kullanılarak 2021 yılına kadar tahminler gerçekleştirilmiştir. Model Türkiye için 2021 yılı sera gazı eşdeğeri CO2 emisyonunu 366,3972 milyon ton olarak tahminlemiştir. Araştırmada görülen bir diğer sonuç ise CO2 emisyonunun dalgalı bir seyir izlediği ancak genel olarak yükselme eğiliminde olduğudur.

References

  • Aydemir, E. (2019). Ders Geçme Notlarının Veri Madenciliği Yöntemleriyle Tahmin Edilmesi. European Journal of Science and Technology, (15), 70–76. https://doi.org/10.31590/ejosat.518899
  • Baki, Ö. (2017). Karbondioksit emisyon hacminin alt sektörler için analizi : Türkiye örneği. NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ. Retrieved from https://tez.yok.gov.tr/
  • Bender, M., Sowers, T., & Brook, E. (1997). Gases in ice cores. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8343–8349. https://doi.org/10.1073/pnas.94.16.8343
  • Cambridge. (2020). Cambridge English Dictionary. Retrieved March 9, 2020, from https://dictionary.cambridge.org/dictionary/english/carbon-dioxide
  • Cheremisinoff, N. P. (2011). Pollution Management and Responsible Care. In Waste (pp. 487–502). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381475-3.10031-2
  • Çoban, O., & Şahbaz, N. (2015). Yenilenebilir Enerji Tüketimi Karbon ve Emisyonu İlişkisi: TR Örneği. Erciyes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Erciyes Üniversitesi Sosyal Bilimler Enstitüsü, 38039 KAYSERİ: Erciyes Üniversitesi.
  • de Mattos Neto, P. S. G., Cavalcanti, G. D. C., Firmino, P. R. A., Silva, E. G., & Vila Nova Filho, S. R. P. (2020). A temporal-window framework for modelling and forecasting time series. Knowledge-Based Systems, 193, 105476. https://doi.org/10.1016/J.KNOSYS.2020.105476
  • Deppa, B. (2018). Holt’s Linear Trend Methods. Retrieved April 28, 2020, from http://course1.winona.edu/bdeppa/FIN 335/Handouts/Exponential_Smoothing (part 2).html#holts-linear-trend-method
  • Dertli, G., & Yinaç, P. (2018). Yenilenebilir Enerji Tüketimi, Karbondioksit Emisyonu, Enerji İthalatı ve Ekonomik Büyüme: Türkiye Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, 15(2), 583–606. Retrieved from https://dergipark.org.tr/tr/pub/ksusbd/issue/40204/446928
  • Efe, M. Ö., & Kaynak, O. (2000). Yapay Sinir Ağları ve Uygulamaları (1st ed.). İstanbul, Türkiye: Bogazici University.
  • Genceli, M. (2012). Trend Oluşturulmasına İlişkin Bazı Sorunlar. İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 35(1–4). Retrieved from https://dergipark.org.tr/en/pub/iuifm/issue/849/9416
  • Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015
  • Keeling, C. D. (1997). Climate change and carbon dioxide: an introduction. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8273–8274. https://doi.org/10.1073/pnas.94.16.8273
  • Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks. IEEE Access, 6, 32328–32338. https://doi.org/10.1109/ACCESS.2018.2837692
  • Lead, C.-O., Lead, I. C. P., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., … Rojas, A. R. (2018). The Carbon Cycle and Atmospheric Carbon Dioxide. Livshin, I. (2019). Artificial Neural Networks with Java: Tools for Building Neural Network Applications. Apress.
  • M, C., Pandit, P., & Bakshi, B. (2019). Forecasting Of Area And Production Of Cashew Nut In Dakshına Kannada Using Arima And Exponential Smoothing Models. Journal of Reliability and Statistical Studies, 12(2), 61–76.
  • Molina, M. E., Perez, A., & Valente, J. P. (2016). Classification of auditory brainstem responses through symbolic pattern discovery. Artificial Intelligence in Medicine. https://doi.org/10.1016/j.artmed.2016.05.001
  • Nordhaus, W. D. (1977). Economic Growth and Climate: The Carbon Dioxide Problem. The American Economic Review, 67(1), 341–346. Retrieved from http://www.jstor.org/stable/1815926
  • Öztemel, E. (2012). Yapay Sinir Ağları. (3, Ed.). İstanbul, Türkiye: Papatya Yayıncılık.
  • Park, S. E., Chang, J. S., & Lee, K. W. (2004). Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th International Conference on Carbon Dioxide Utilization, Seoul, Korea, October 12-16, 2003. Elsevier Science.
  • Rhys, I. H. (2020). Machine Learning with R, the tidyverse, and mlr. Manning Publications.
  • Shmueli, G., & Lichtendahl, K. C. (2016). Practical Time Series Forecasting with R: A Hands-On Guide [2nd Edition]. Axelrod Schnall Publishers.
  • Sun, Y. H. (2004). Chemicals from CO2 via heterogeneous catalysis at moderate conditions. In Park, SE and Chang, JS and Lee, KW (Ed.), CARBON DIOXIDE UTILIZATION FOR GLOBAL SUSTAINABILITY (Vol. 153, pp. 9–16). SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS: ELSEVIER SCIENCE BV.
  • The R Foundation. (2020). R: What is R? Retrieved March 13, 2020, from https://www.r-project.org/about.html
  • Thomson, D. J. (1997). Dependence of global temperatures on atmospheric CO<sub>2</sub> and solar irradiance. Proceedings of the National Academy of Sciences, 94(16), 8370 LP – 8377. https://doi.org/10.1073/pnas.94.16.8370
  • U.S. Environmental Protection Agency. (2019). US EPA. Retrieved March 10, 2020, from https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&glossaryName=Glossary Climate Change Terms
  • World Bank Group. (2020). World Development Indicators | DataBank. Retrieved April 28, 2020, from https://databank.worldbank.org/reports.aspx?source=2&series=EN.CO2.OTHX.ZS&country=
  • Yao, J., Wang, P., Wang, G., Shrestha, S., Xue, B., & Sun, W. (2020). Establishing a time series trend structure model to mine potential hydrological information from hydrometeorological time series data. Science of The Total Environment, 698, 134227. https://doi.org/10.1016/J.SCITOTENV.2019.134227
  • Yapar, G., Capar, S., Selamlar, H. T., & Yavuz, I. (2018). Modified holt’s linear trend method. Hacettepe Journal of Mathematics and Statistics, 47(5), 1394–1403. https://doi.org/10.15672/HJMS.2017.493
  • Zhang, Z. Q. (2003). Mites of Greenhouses: Identification, Biology and Control. CABI Pub.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Erkan Özhan 0000-0002-3971-2676

Publication Date August 31, 2020
Published in Issue Year 2020

Cite

APA Özhan, E. (2020). Yapay Sinir Ağları ve Üstel Düzleştirme Yöntemi ile Türkiye’deki CO2 Emisyonunun Zaman Serisi ile Tahmini. Avrupa Bilim Ve Teknoloji Dergisi(19), 282-289. https://doi.org/10.31590/ejosat.705666