Oxygen Transfer Ability of Co-Pb Metal Oxides during the Chemical Looping Oxidation of Tuncbilek Lignite
Year 2020,
, 767 - 778, 15.04.2020
Arzu Kanca
,
Prof.dr. Deniz Üner
Abstract
Bu çalışma, kobalt-kurşun (Co-Pb) karışık metal oksitlerin Tuncbilek linyitlerininin inert ortamda termal bozunması esnasında göstermiş oldukları oksijen transfer yeteneğini belirlemeyi amaçlamaktadır. Bu metal oksitlerin farklı indirgeyici gazlar varlığında indirgenme reaksiyonlarının termodinamik hesaplamaları uygun reaksiyon sıcaklıklarını belirlemek için yapılmıştır. Co-Pb karışık metal oksitler ıslak emdirme yöntemiyle hazırlanmış ve X-ray kırınımı ve Raman spektrometresi ile karakterize edilmiştir. Bu metal oksitlerin oksijen transfer performansları termal gravimetrik analiz (TGA) metoduyla 40-600ºC sıcaklık aralığında azot atmosferinde gerçekleştirilmiştir. TGA sonuçları, oksidasyon etkinliğine dayalı optimum linyit/ Co-Pb mixed oxide oranının 0.11 olduğunu ortaya koymuştur.
Supporting Institution
Devlet Planlama Teşkilatı
Project Number
BAP-08-11-DPT-2002K120510 OYP program
Thanks
Numuneler için TKİ, TGA deneyleri için ODTÜ Kimya Mühendisliği Bölümü uzmanlarından Mihtican Açıkgöz ve karakterizasyonlar için ODTÜ merkez Laboratuvarına teşekkür ederiz.
References
- Fan LS, Li FX, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes. Particuology 2008;6(3):131-42.
- Kim HR, Wang DW, Zeng L, Bayham S, Tong A, Chung E, et al. Coal direct chemical looping combustion process: Design and operation of a 25-kW(th) sub-pilot unit. Fuel 2013;108:370-84.
- Siriwardane R, Tian HJ, Richards G, Simonyi T, Poston J. Chemical-Looping Combustion of Coal with Metal Oxide Oxygen Carriers. Energy & Fuels 2009;23(8):3885-92.
- Cao Y, Pan WP. Investigation of chemical looping combustion by solid fuels. 1. Process analysis. Energy & Fuels 2006;20(5):1836-44.
- Cho P, Mattisson T, Lyngfelt A. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel 2004;83(9):1215-25.
- Bhavsar S, Veser G. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion. Industrial & Engineering Chemistry Research 2013;52(44):15342-52.
- Ksepko E, Siriwardane RV, Tian HJ, Simonyi T, Sciazko M. Effect of H2S on Chemical Looping Combustion of Coal-Derived Synthesis Gas over Fe-Mn Oxides Supported on Sepiolite, ZrO2, and Al2O3. Energy & Fuels 2012;26(4):2461-72.
- Ksepko E, Siriwardane RV, Tian HJ, Simonyi T, Sciazko M. Comparative Investigation on Chemical Looping Combustion of Coal-Derived Synthesis Gas containing H2S over Supported NiO Oxygen Carriers. Energy & Fuels 2010;24(8):4206-14.
- Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy & Fuels 2004;18(2):371-7.
- Zafar Q, Mattisson T, Gevert B. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Industrial & Engineering Chemistry Research 2005;44(10):3485-96.
- Jerndal E, Leion H, Axelsson L, Ekvall T, Hedberg M, Johansson K, et al. Using Low-Cost Iron-Based Materials as Oxygen Carriers for Chemical Looping Combustion. Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles 2011;66(2):235-48.
- Uner D, Demirkol MK, Dernaika B. A novel catalyst for diesel soot oxidation. Applied Catalysis B-Environmental 2005;61(3-4):334-45.
- Genc VE, Altay FE, Uner D. Testing molten metal oxide catalysts over structured ceramic substrates for diesel soot oxidation. Catalysis Today 2005;105(3-4):537-43.
- Kanca A, Dodd M, Reimer JA, Uner D. Following the structure and reactivity of Tuncbilek lignite during pyrolysis and hydrogenation. Fuel Processing Technology 2016;152:266-73.
- Kanca A, Uner D. In situ and downstream sulfidation reactivity of PbO and ZnO during pyrolysis and hydrogenation of a high-sulfur lignite. International Journal of Hydrogen Energy 2019;44(34):18827-35.
- Barin I. Thermochemical data of pure substances. 1989.
- Data ICfD, Selected Powder Diffraction Data for Education & [and] Training: Search Manual and Data Cards. JCPDS: 1988.
- Shen XP, Miao HJ, Zhao H, Xu Z. Synthesis, characterization and magnetic properties of Co3O4 nanotubes. Applied Physics a-Materials Science & Processing 2008;91(1):47-51.
- Lopes I, El Hassan N, Guerba H, Wallez G, Davidson A. Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas. Chemistry of Materials 2006;18(25):5826-8.
- Yung MM, Zhao ZK, Woods MP, Ozkan US. Preferential oxidation of carbon monoxide on CoOx/ZrO2. Journal of Molecular Catalysis a-Chemical 2008;279(1):1-9.
- Jensen JO. Vibrational frequencies and structural determinations of Pb6O(OH)(6)(4+). Journal of Molecular Structure-Theochem 2003;635:11-24.
- Kanca A. Characterization and reactivity studies for chemical loop gasification of high sulfur lignites. Department of Chemical Engineering. PhD. Middle East Technical University; 2013.
Oxygen Transfer Ability of Co-Pb Metal Oxides during the Chemical Looping Oxidation of Tuncbilek Lignite
Year 2020,
, 767 - 778, 15.04.2020
Arzu Kanca
,
Prof.dr. Deniz Üner
Abstract
The study aims to determine the oxygen transfer ability of cobalt lead (Co-Pb) individual and mixed oxides during the thermal decomposition of Tuncbilek lignite under inert atmosphere. Thermodynamic calculations of reduction reactions were performed to show the favorable reduction temperatures for the different reductive gases. Co and Pb mixed metal oxides were prepared by wet impregnation method and they characterized by X-ray diffractometer and Raman spectroscopy. Oxygen transfer performances of these oxides were evaluated by thermal gravimetric analysis (TGA) in terms of oxidation rates of lignite sample under N2 flows in the range of temperatures between 40 to 600ºC. The results of thermal gravimetric analysis (TGA) indicated that the optimum coal to Co-Pb metal oxides ratio based on oxidation efficiency was 0.11.
Project Number
BAP-08-11-DPT-2002K120510 OYP program
References
- Fan LS, Li FX, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes. Particuology 2008;6(3):131-42.
- Kim HR, Wang DW, Zeng L, Bayham S, Tong A, Chung E, et al. Coal direct chemical looping combustion process: Design and operation of a 25-kW(th) sub-pilot unit. Fuel 2013;108:370-84.
- Siriwardane R, Tian HJ, Richards G, Simonyi T, Poston J. Chemical-Looping Combustion of Coal with Metal Oxide Oxygen Carriers. Energy & Fuels 2009;23(8):3885-92.
- Cao Y, Pan WP. Investigation of chemical looping combustion by solid fuels. 1. Process analysis. Energy & Fuels 2006;20(5):1836-44.
- Cho P, Mattisson T, Lyngfelt A. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel 2004;83(9):1215-25.
- Bhavsar S, Veser G. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion. Industrial & Engineering Chemistry Research 2013;52(44):15342-52.
- Ksepko E, Siriwardane RV, Tian HJ, Simonyi T, Sciazko M. Effect of H2S on Chemical Looping Combustion of Coal-Derived Synthesis Gas over Fe-Mn Oxides Supported on Sepiolite, ZrO2, and Al2O3. Energy & Fuels 2012;26(4):2461-72.
- Ksepko E, Siriwardane RV, Tian HJ, Simonyi T, Sciazko M. Comparative Investigation on Chemical Looping Combustion of Coal-Derived Synthesis Gas containing H2S over Supported NiO Oxygen Carriers. Energy & Fuels 2010;24(8):4206-14.
- Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy & Fuels 2004;18(2):371-7.
- Zafar Q, Mattisson T, Gevert B. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Industrial & Engineering Chemistry Research 2005;44(10):3485-96.
- Jerndal E, Leion H, Axelsson L, Ekvall T, Hedberg M, Johansson K, et al. Using Low-Cost Iron-Based Materials as Oxygen Carriers for Chemical Looping Combustion. Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles 2011;66(2):235-48.
- Uner D, Demirkol MK, Dernaika B. A novel catalyst for diesel soot oxidation. Applied Catalysis B-Environmental 2005;61(3-4):334-45.
- Genc VE, Altay FE, Uner D. Testing molten metal oxide catalysts over structured ceramic substrates for diesel soot oxidation. Catalysis Today 2005;105(3-4):537-43.
- Kanca A, Dodd M, Reimer JA, Uner D. Following the structure and reactivity of Tuncbilek lignite during pyrolysis and hydrogenation. Fuel Processing Technology 2016;152:266-73.
- Kanca A, Uner D. In situ and downstream sulfidation reactivity of PbO and ZnO during pyrolysis and hydrogenation of a high-sulfur lignite. International Journal of Hydrogen Energy 2019;44(34):18827-35.
- Barin I. Thermochemical data of pure substances. 1989.
- Data ICfD, Selected Powder Diffraction Data for Education & [and] Training: Search Manual and Data Cards. JCPDS: 1988.
- Shen XP, Miao HJ, Zhao H, Xu Z. Synthesis, characterization and magnetic properties of Co3O4 nanotubes. Applied Physics a-Materials Science & Processing 2008;91(1):47-51.
- Lopes I, El Hassan N, Guerba H, Wallez G, Davidson A. Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas. Chemistry of Materials 2006;18(25):5826-8.
- Yung MM, Zhao ZK, Woods MP, Ozkan US. Preferential oxidation of carbon monoxide on CoOx/ZrO2. Journal of Molecular Catalysis a-Chemical 2008;279(1):1-9.
- Jensen JO. Vibrational frequencies and structural determinations of Pb6O(OH)(6)(4+). Journal of Molecular Structure-Theochem 2003;635:11-24.
- Kanca A. Characterization and reactivity studies for chemical loop gasification of high sulfur lignites. Department of Chemical Engineering. PhD. Middle East Technical University; 2013.