Research Article
BibTex RIS Cite

A Study of CO2 Adsorption Behaviour and Kinetics on KIT-6

Year 2020, , 48 - 55, 31.08.2020
https://doi.org/10.31590/ejosat.707874

Abstract

KIT-6 mesoporous silica has been used in catalysis, nano containers, adsorption and drug delivery applications due to its original three dimensional channel network. Typically, KIT-6 is prepared from triblock copolymers as the template directing agents under acidic conditions. In this article, KIT-6 was successfully synthesized via partitioned cooperative self-assembly method. The synthesized sample was characterized using X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA) and N2 adsorption/desorption. The characterization methods demonstrated that the synthesized sample is ordered KIT-6 mesoporous silica with a high surface area (605.93 m2 g-1), pore volume (0.58 cm3 g-1), and good thermal stability. The CO2 adsorption studies of the sample were performed at different temperatures (25, 75 and 100°C). The maximum adsorption capacity (0.65 mmol g-1) was observed at 25°C adsorption temperature. In addition, it was determined that the adsorption capacity of KIT-6 decreases with increasing adsorption temperature. This study also presents the investigation of the CO2 adsorption kinetics on KIT-6 using the first order and the second order models. The kinetic data for the CO2 adsorption on the sample conformed to the second order model. The activation energy (Ea) was calculated as 18.75 kJ mol-1 from Arrhenious plot for CO2 adsorption on KIT-6 mesoporous silica. Moreover, the regenerability and cyclic stability of KIT-6 mesoporous silica was determined using TG/DTA analysis. From the analysis results, it was clearly seen that the ordered mesoporus silica has perfect cyclic stability of 94% after 4 adsorption/desorption cycle, which implies that the synthesized KIT-6 could possibly used as an adsorbent in the CO2 adsorption.

References

  • Adams, W. A., Bakker, M. G., & Quickenden, T. I. (2006). Photovoltaic properties of ordered mesoporous silica thin film electrodes encapsulating titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry, 181(2-3), 166-173.
  • An, H., Feng, B., & Su, S. (2011). CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. International Journal of Greenhouse Gas Control, 5(1), 16-25.
  • Bello, A., & Idem, R. O. (2006). Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Industrial & engineering chemistry research, 45(8), 2569-2579.
  • Bhatta, L. K. G., Subramanyam, S., Chengala, M. D., Olivera, S., & Venkatesh, K. (2015). Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. Journal of Cleaner Production, 103, 171-196.
  • Chakma, A. (1997). CO2 capture processes—opportunities for improved energy efficiencies. Energy conversion and management, 38, S51-S56.
  • Hudson, M. R., Queen, W. L., Mason, J. A., Fickel, D. W., Lobo, R. F., & Brown, C. M. (2012). Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. Journal of the American Chemical Society, 134(4), 1970-1973.
  • Jribi, S., Miyazaki, T., Saha, B. B., Pal, A., Younes, M. M., Koyama, S., & Maalej, A. (2017). Equilibrium and kinetics of CO2 adsorption onto activated carbon. International Journal of Heat and Mass Transfer, 108, 1941-1946.
  • Kishor, R., & Ghoshal, A. K. (2015). APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chemical Engineering Journal, 262, 882-890.
  • Kishor, R., & Ghoshal, A. K. (2016). High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation. Chemical Engineering Journal, 300, 236–244.
  • Kruk, M., Jaroniec, M., & Sayari, A. (2000). New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous and mesoporous materials, 35, 545-553.
  • Lin, H., Zhong, X., Ciotonea, C., Fan, X., Mao, X., Li, Y., Deng B., Zhang H., & Royer, S. (2018). Efficient degradation of clofibric acid by electro-enhanced peroxydisulfate activation with Fe-Cu/SBA-15 catalyst. Applied Catalysis B: Environmental, 230, 1-10.
  • Liu, P., & Chen, G. (2014). Chapter 1–general introduction to porous materials. Porous Materials, 1-20.
  • Liu, W., Zhu, Z., Deng, K., Li, Z., Zhou, Y., Qiu, H., Gao Y., Che S., & Tang, Z. (2013). Gold nanorod@ chiral mesoporous silica core–shell nanoparticles with unique optical properties. Journal of the American Chemical Society, 135(26), 9659-9664.
  • Liu, Y., Shi, J., Chen, J., Ye, Q., Pan, H., Shao, Z. & Shi, Y. (2010). Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous and Mesoporous Materials, 134, 16–21.
  • Palaniappan, A., Su, X., & Tay, F. E. (2006). Functionalized mesoporous silica films for gas sensing applications. Journal of electroceramics, 16(4), 503-505.
  • Sakamoto, Y., Nagata, K., Yogo, K., & Yamada, K. (2007). Preparation and CO2 separation properties of amine-modified mesoporous silica membranes. Microporous and mesoporous materials, 101(1-2), 303-311.
  • Schneider, P. (1995). Adsorption isotherms of microporous-mesoporous solids revisited. Applied Catalysis A: General, 129(2), 157-165.
  • Shanmugam, N., Lee, K. T., Cheng, W. Y., & Lu, S. Y. (2012). Organic–inorganic hybrid polyaspartimide involving polyhedral oligomeric silsesquioxane via Michael addition for CO2 capture. Journal of Polymer Science Part A: Polymer Chemistry, 50(13), 2521-2526.
  • Singh, V. K., Kumar, E. A. (2016). Comparative studies on CO2 adsorption kinetics by solid adsorbents. Energy Procedia, 90, 316 – 325.
  • Son,W.-J., Choi, J.-S.& Ahn,W.-S. (2008). Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous and Mesoporous Materials, 113, 31-40.
  • Surblé, S., Millange, F., Serre, C., Düren, T., Latroche, M., Bourrelly, S., Llewellyn, P.L, & Férey, G. (2006). Synthesis of MIL-102, a chromium carboxylate metal− organic framework, with gas sorption analysis. Journal of the American Chemical Society, 128(46), 14889-14896.
  • Veawab, A., Tontiwachwuthikul, P., & Chakma, A. (1999). Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Industrial & engineering chemistry research, 38(10), 3917-3924.
  • Walton, K. S., Abney, M. B., & LeVan, M. D. (2006). CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous and mesoporous materials, 91(1-3), 78-84.
  • Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and mesoporous materials, 117(1-2), 1-9.
  • Wang, S., Yan, S., Ma, X., & Gong, J. (2011). Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy & Environmental Science, 4(10), 3805-3819.
  • Wang, W., Qi, R., Shan, W., Wang, X., Jia, Q., Zhao, J., Zhang C.,& Ru, H. (2014). Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Microporous and Mesoporous Materials, 194, 167-173.
  • Xu, X., Song, C., Andresen, J.M., Miller, B.G. & Scaroni, A.W. (2003). Preparation and characterization of novel CO 2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and Mesoporous Materials, 62, 29-45.
  • Yilmaz, M. S. (2017). Synthesis of novel amine modified hollow mesoporous silica@ Mg-Al layered double hydroxide composite and its application in CO2 adsorption. Microporous and Mesoporous Materials, 245, 109-117.
  • Yilmaz, M. S., & Karakas, S. B. (2018). Low-Cost Synthesis of Organic–Inorganic Hybrid MSU-3 from Gold Mine Waste for CO 2 Adsorption. Water, Air, & Soil Pollution, 229(10), 326.
  • Yilmaz, M. S., Palantoken, A., & Piskin, S. (2016). Release of flurbiprofen using of SBA-15 mesoporous silica: influence of silica sources and functionalization. Journal of Non-Crystalline Solids, 437, 80-86.
  • Zhao, A., Samanta,A., Sarkar, P., & Gupta,R. (2013). Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Industrial & Engineering Chemistry Research, 52, 6480-6491.
  • Zhao, B., Sun, Y., Yuan, Y., Gao, J., Wang, S., Zhuo, Y., & Chen, C. (2011). Study on corrosion in CO2 chemical absorption process using amine solution. Energy Procedia, 4, 93-100.
  • Zhao, L., Qin, H., Wu, R. a., & Zou, H. (2012). Recent advances of mesoporous materials in sample preparation. Journal of Chromatography A, 1228, 193-204.

KIT-6 Üzerinde CO2 Adsorpsiyon Davranışı ve Kinetiği Üzerine Bir Çalışma

Year 2020, , 48 - 55, 31.08.2020
https://doi.org/10.31590/ejosat.707874

Abstract

KIT-6 mezogözenekli silika özgün üç boyutlu kanal ağı sayesinde kataliz, nano kaplar, adsorpsiyon ve ilaç taşıyıcı uygulamalarında kullanılmıştır. Tipik olarak KIT-6, asidik koşullar altında şablon yönlendirici ajanlar olarak triblok kopolimerlerinden hazırlanır. Bu makalede, KIT-6 bölümlenmiş kooperatif kendi kendine montaj yöntemi ile başarıyla sentezlenmiştir. Sentezlenen numune X-ışınları difraktometresi (XRD), termogravimetri/diferansiyel termal analiz (TG/DTA) ve N2 adsorpsiyon/desorpsiyon kullanılarak karakterize edilmiştir. Karakterizasyon yöntemleri, sentezlenen numunenin yüksek yüzey alanlı (605.93 m2 g-1), gözenek hacimli (0.58 cm3 g-1) ve iyi termal stabiliteli düzenli KIT-6 mezoporöz silika olduğunu göstermiştir. Numunenin CO2 adsorpsiyon çalışmaları farklı sıcaklıklarda (25, 75 ve 100°C) gerçekleştirilmiştir. Maksimum adsorpsiyon kapasitesi (0.65 mmol g-1) 25°C adsorpsiyon sıcaklığında gözlenmiştir. Ayrıca, adsorpsiyon sıcaklığının artmasıyla KIT-6’nın adsorpsiyon kapasitesinin azaldığı belirlenmiştir. Bu çalışma aynı zamanda birinci ve ikinci derece modelleri kullanarak KIT-6 üzerindeki CO2 adsorpsiyon kinetiğinin araştırılmasını sunmaktadır. Numune üzerine CO2 adsorpsiyonu için kinetik veriler, ikinci dereceden modele uymuştur. Aktivasyon enerjisi (Ea), KIT-6 mezoporöz silika üzerine CO2 adsorpsiyonu için Arrhenious grafiğinden 18.75 kJ mol-1 olarak hesaplanmıştır. Ayrıca, KIT-6 mezoporöz silikanın yenilenebilirliği ve döngüsel stabilitesi TG/DTA analizi kullanılarak belirlenmiştir. Analiz sonuçlarından, düzenli mezoporöz silikanın, 4 adsorpsiyon/desorpsiyon döngüsünden sonra %94'lük mükemmel döngüsel stabiliteye sahip olduğu açıkça görülmüştür; bu, sentezlenen KIT-6'nın muhtemelen CO2 adsorpsiyonunda bir adsorban olarak kullanılabileceğine işaret etmektedir.

References

  • Adams, W. A., Bakker, M. G., & Quickenden, T. I. (2006). Photovoltaic properties of ordered mesoporous silica thin film electrodes encapsulating titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry, 181(2-3), 166-173.
  • An, H., Feng, B., & Su, S. (2011). CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. International Journal of Greenhouse Gas Control, 5(1), 16-25.
  • Bello, A., & Idem, R. O. (2006). Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Industrial & engineering chemistry research, 45(8), 2569-2579.
  • Bhatta, L. K. G., Subramanyam, S., Chengala, M. D., Olivera, S., & Venkatesh, K. (2015). Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. Journal of Cleaner Production, 103, 171-196.
  • Chakma, A. (1997). CO2 capture processes—opportunities for improved energy efficiencies. Energy conversion and management, 38, S51-S56.
  • Hudson, M. R., Queen, W. L., Mason, J. A., Fickel, D. W., Lobo, R. F., & Brown, C. M. (2012). Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. Journal of the American Chemical Society, 134(4), 1970-1973.
  • Jribi, S., Miyazaki, T., Saha, B. B., Pal, A., Younes, M. M., Koyama, S., & Maalej, A. (2017). Equilibrium and kinetics of CO2 adsorption onto activated carbon. International Journal of Heat and Mass Transfer, 108, 1941-1946.
  • Kishor, R., & Ghoshal, A. K. (2015). APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chemical Engineering Journal, 262, 882-890.
  • Kishor, R., & Ghoshal, A. K. (2016). High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation. Chemical Engineering Journal, 300, 236–244.
  • Kruk, M., Jaroniec, M., & Sayari, A. (2000). New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous and mesoporous materials, 35, 545-553.
  • Lin, H., Zhong, X., Ciotonea, C., Fan, X., Mao, X., Li, Y., Deng B., Zhang H., & Royer, S. (2018). Efficient degradation of clofibric acid by electro-enhanced peroxydisulfate activation with Fe-Cu/SBA-15 catalyst. Applied Catalysis B: Environmental, 230, 1-10.
  • Liu, P., & Chen, G. (2014). Chapter 1–general introduction to porous materials. Porous Materials, 1-20.
  • Liu, W., Zhu, Z., Deng, K., Li, Z., Zhou, Y., Qiu, H., Gao Y., Che S., & Tang, Z. (2013). Gold nanorod@ chiral mesoporous silica core–shell nanoparticles with unique optical properties. Journal of the American Chemical Society, 135(26), 9659-9664.
  • Liu, Y., Shi, J., Chen, J., Ye, Q., Pan, H., Shao, Z. & Shi, Y. (2010). Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous and Mesoporous Materials, 134, 16–21.
  • Palaniappan, A., Su, X., & Tay, F. E. (2006). Functionalized mesoporous silica films for gas sensing applications. Journal of electroceramics, 16(4), 503-505.
  • Sakamoto, Y., Nagata, K., Yogo, K., & Yamada, K. (2007). Preparation and CO2 separation properties of amine-modified mesoporous silica membranes. Microporous and mesoporous materials, 101(1-2), 303-311.
  • Schneider, P. (1995). Adsorption isotherms of microporous-mesoporous solids revisited. Applied Catalysis A: General, 129(2), 157-165.
  • Shanmugam, N., Lee, K. T., Cheng, W. Y., & Lu, S. Y. (2012). Organic–inorganic hybrid polyaspartimide involving polyhedral oligomeric silsesquioxane via Michael addition for CO2 capture. Journal of Polymer Science Part A: Polymer Chemistry, 50(13), 2521-2526.
  • Singh, V. K., Kumar, E. A. (2016). Comparative studies on CO2 adsorption kinetics by solid adsorbents. Energy Procedia, 90, 316 – 325.
  • Son,W.-J., Choi, J.-S.& Ahn,W.-S. (2008). Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous and Mesoporous Materials, 113, 31-40.
  • Surblé, S., Millange, F., Serre, C., Düren, T., Latroche, M., Bourrelly, S., Llewellyn, P.L, & Férey, G. (2006). Synthesis of MIL-102, a chromium carboxylate metal− organic framework, with gas sorption analysis. Journal of the American Chemical Society, 128(46), 14889-14896.
  • Veawab, A., Tontiwachwuthikul, P., & Chakma, A. (1999). Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Industrial & engineering chemistry research, 38(10), 3917-3924.
  • Walton, K. S., Abney, M. B., & LeVan, M. D. (2006). CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous and mesoporous materials, 91(1-3), 78-84.
  • Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and mesoporous materials, 117(1-2), 1-9.
  • Wang, S., Yan, S., Ma, X., & Gong, J. (2011). Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy & Environmental Science, 4(10), 3805-3819.
  • Wang, W., Qi, R., Shan, W., Wang, X., Jia, Q., Zhao, J., Zhang C.,& Ru, H. (2014). Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Microporous and Mesoporous Materials, 194, 167-173.
  • Xu, X., Song, C., Andresen, J.M., Miller, B.G. & Scaroni, A.W. (2003). Preparation and characterization of novel CO 2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and Mesoporous Materials, 62, 29-45.
  • Yilmaz, M. S. (2017). Synthesis of novel amine modified hollow mesoporous silica@ Mg-Al layered double hydroxide composite and its application in CO2 adsorption. Microporous and Mesoporous Materials, 245, 109-117.
  • Yilmaz, M. S., & Karakas, S. B. (2018). Low-Cost Synthesis of Organic–Inorganic Hybrid MSU-3 from Gold Mine Waste for CO 2 Adsorption. Water, Air, & Soil Pollution, 229(10), 326.
  • Yilmaz, M. S., Palantoken, A., & Piskin, S. (2016). Release of flurbiprofen using of SBA-15 mesoporous silica: influence of silica sources and functionalization. Journal of Non-Crystalline Solids, 437, 80-86.
  • Zhao, A., Samanta,A., Sarkar, P., & Gupta,R. (2013). Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Industrial & Engineering Chemistry Research, 52, 6480-6491.
  • Zhao, B., Sun, Y., Yuan, Y., Gao, J., Wang, S., Zhuo, Y., & Chen, C. (2011). Study on corrosion in CO2 chemical absorption process using amine solution. Energy Procedia, 4, 93-100.
  • Zhao, L., Qin, H., Wu, R. a., & Zou, H. (2012). Recent advances of mesoporous materials in sample preparation. Journal of Chromatography A, 1228, 193-204.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Müge Sarı Yılmaz 0000-0003-0441-7586

Publication Date August 31, 2020
Published in Issue Year 2020

Cite

APA Sarı Yılmaz, M. (2020). A Study of CO2 Adsorption Behaviour and Kinetics on KIT-6. Avrupa Bilim Ve Teknoloji Dergisi(19), 48-55. https://doi.org/10.31590/ejosat.707874