Research Article
BibTex RIS Cite

Sınıflandırma Algoritmalarını Kullanarak Meme Dokusunda Kitleleri Değerlendirmeye Yönelik Karar Destek Sistemi

Year 2020, , 114 - 119, 01.04.2020
https://doi.org/10.31590/ejosat.araconf15

Abstract

Meme kanseri, küresel olarak kadınlar arasında en çok görülen ve ölümle sonuçlanan kanser türleri arasındadır. Son yirmi yılda dünyanın farklı bölgelerinde yayınlanan epidemiyolojik çalışmalar, meme kanseri ölüm oranlarında önemli bir artış olduğunu göstermektedir. Bugün, mamografi meme dokusundaki kitlelerin ve mikrokalsifikasyonların görüntülenmesinde en etkin yöntemdir.. Öte yandan, mamografi tahmini ile yapılan meme biyopsileri, biyopsi olmadan önlenebilecek iyi huylu bulguların yaklaşık yüzde 70 kapsamaktadır. Bu nedenle mamografi analizi tahminlerinde hekimlere yardımcı olmak için otomatik bir yönteme ihtiyaç vardır. Araştırmacılar son yıllarda farklı medikal karar destek sistemleri önermiştir. Bu çalışmada, meme kanseri tanısı sürecinde kullanılacak bir tıbbi karar destek sistemi önerilmiştir. Bu sistemin temel amacı, gereksiz meme biyopsilerinin miktarını azaltmak ve tanıyı daha güvenilir hale getirmektir. Buna göre, tercih edilen mamografi özniteliklei içeren bir verikümesinde, hastanın yaşı dışında, meme dokusunun BI-RADS değerlendirmesi, kütlenin şekli, kütle payı, doku yoğunluğu, lezyonun ciddiyetini gösteren bir sınıf etiketi bir olasılıksal sınıflandırma algoritması olan Naive Bayes ve bir ileri beslemeli yapay sinir ağı olan Çok Katmanlı Perceptron algoritmalarının performansları değerlendirilmiştir. Önerilen sistem biyopsi veya kısa süreli takip kararı verilmesine yardımcı olabilir. Testsonuçları, önerilen yöntemin bilgisayar destekli tanı sistemlerinde bir karar modülü olarak kullanılabileceği konusunda umut vericidir.

References

  • Alaa, A.M., Moon, K. H., Hsu, W., Van Der Schaar, M. (2016). ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening. arXiv, 1-32.
  • Baker, J. A., Kornguth, P. J., Lo, J. Y. , Williford, M. E., Floyd, C. E. (1995). Breast cancer: Prediction with artificial neural networks based on BI-RADS standardized lexicon. Radiology, 196, 817-822.
  • Bilska-Wolak, A. O, Floyd, C. E. (2001). Investigating different similarity measures for a case-based reasoning classifier to predict breast cancer. Proc. SPIE, 4322, 1862-1866.
  • Bilska-Wolak, A. O, Floyd, C. E. (2002). Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with BI-RADS lexicon. Med. Phys., 2002, 2090-2100.
  • Elter, M., Schulz-Wendtland, R., Wittenberg, T. (2011). The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med. Phys. , 34(11), 4164-4172.
  • Elter, M., Schulz-Wendtland, R., Wittenberg, T. (2007). The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Medical Physics, 34(11), 4164-4172.
  • Fernandes, A. S. , Alves, P., Jarman, I., Etchells, T. A., Foncea, J. M., Lisboa, P. J. G. (2010). A Clinical Decision Support System for Breast Cancer Patients. IFIP International Federation for Information Processing. Costa de Caparica, Portugal.
  • Floyd, C. E., Lo, J. Y. , Tourassi, G. D. (2000). A case-based reasoning computer algorithm that uses mammographicfindings for breast biopsy decisions. AJR Am J Roentgenol, 175(5), 1347-1353.
  • Jiang, X. , Wells, A., Brufsky, A., Neapolita, R. (2019). A clinical decision support system learned from data to personalize treatment recommendations towards preventing breast cancer metastasis. Plos One, 1-18.
  • Markey, M. K., Fischer, E. A., Lo, J. Y. (2004). Bayesian networks of BIRADS descriptors for breast lesion classifications. International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, California.
  • Mokhtar, S. A., Elsayad, A. M. (2013). Predicting the Severity of Masses with Data Mining Methods. IJCSI International Journal of Computer Science Issues, 10(2), 160-168.
  • Rahman, M., Alpaslan, N. (2017). A Decision Support System (DSS) for Breast Cancer Detection Based on Invariant Feature Extraction, Classification, and Retrieval of Masses of Mammographic Images. Medical Imaging and Image-Guided Interventions (s. 11-32). London: IntechOpen Limited.
  • Ruck, D. W., Rogers, S. K., Kabrisky, M., Oxley, M. E., Suter, B. W. (1990). The Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant Function. IEEE Transactions on Neural Networks, 1(4), 296-298.
  • Sebe, N., Lew, M.S., Cohen, I., Garg, A., Huang, T. S. (2002). Emotion Recognition Using a Cauchy Naive Bayes Classifier. Object recognition supported by user interaction for service robots. Canada.

A Decision Support System to Assess the Masses in Breast Tissue using Classification Algorithms

Year 2020, , 114 - 119, 01.04.2020
https://doi.org/10.31590/ejosat.araconf15

Abstract

Breast cancer is the most widely recognized cancer-related death among women globally. Epidemiological studies released in different parts of the world over the past two decades show a significant rise in mortality rates for breast cancer. Today, mammography is the most effective method for imaging masses and microcalcifications in breast tissue. On the other hand, breast biopsy predictions arising from mammogram analysis lead to nearly 70 percent biopsies of benign findings that can be prevented without a biopsy. An automated method is therefore required to assist physicians in mammography analysis prognoses. Researchers have suggested different medical decision support systems recently. In this study, a medical decision support system to be utilized in the process of a breast cancer diagnosis is proposed. The primary purpose of this system is to lower the number of unnecessary breast biopsies and make the diagnosis more reliable. Accordingly, apart from the age of the patient, BI-RADS assessment of the breast tissue, the shape of the mass, mass margin, tissue density, the class label indicating the severity of the lesion are evaluated using the performances of a Naive Bayes algorithm , which is a probabilistic classification algorithm, and Multilayer Perceptron algorithm, which is a feed forward neural network, as two different classification algorithms via a preferred dataset in which each mammography mass have six different feature. The proposed system can help to make a biopsy or short-time follow-up decision. The test results are promising that the proposed method can be used as a decision module in computer-aided diagnosis systems.

References

  • Alaa, A.M., Moon, K. H., Hsu, W., Van Der Schaar, M. (2016). ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening. arXiv, 1-32.
  • Baker, J. A., Kornguth, P. J., Lo, J. Y. , Williford, M. E., Floyd, C. E. (1995). Breast cancer: Prediction with artificial neural networks based on BI-RADS standardized lexicon. Radiology, 196, 817-822.
  • Bilska-Wolak, A. O, Floyd, C. E. (2001). Investigating different similarity measures for a case-based reasoning classifier to predict breast cancer. Proc. SPIE, 4322, 1862-1866.
  • Bilska-Wolak, A. O, Floyd, C. E. (2002). Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with BI-RADS lexicon. Med. Phys., 2002, 2090-2100.
  • Elter, M., Schulz-Wendtland, R., Wittenberg, T. (2011). The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med. Phys. , 34(11), 4164-4172.
  • Elter, M., Schulz-Wendtland, R., Wittenberg, T. (2007). The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Medical Physics, 34(11), 4164-4172.
  • Fernandes, A. S. , Alves, P., Jarman, I., Etchells, T. A., Foncea, J. M., Lisboa, P. J. G. (2010). A Clinical Decision Support System for Breast Cancer Patients. IFIP International Federation for Information Processing. Costa de Caparica, Portugal.
  • Floyd, C. E., Lo, J. Y. , Tourassi, G. D. (2000). A case-based reasoning computer algorithm that uses mammographicfindings for breast biopsy decisions. AJR Am J Roentgenol, 175(5), 1347-1353.
  • Jiang, X. , Wells, A., Brufsky, A., Neapolita, R. (2019). A clinical decision support system learned from data to personalize treatment recommendations towards preventing breast cancer metastasis. Plos One, 1-18.
  • Markey, M. K., Fischer, E. A., Lo, J. Y. (2004). Bayesian networks of BIRADS descriptors for breast lesion classifications. International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, California.
  • Mokhtar, S. A., Elsayad, A. M. (2013). Predicting the Severity of Masses with Data Mining Methods. IJCSI International Journal of Computer Science Issues, 10(2), 160-168.
  • Rahman, M., Alpaslan, N. (2017). A Decision Support System (DSS) for Breast Cancer Detection Based on Invariant Feature Extraction, Classification, and Retrieval of Masses of Mammographic Images. Medical Imaging and Image-Guided Interventions (s. 11-32). London: IntechOpen Limited.
  • Ruck, D. W., Rogers, S. K., Kabrisky, M., Oxley, M. E., Suter, B. W. (1990). The Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant Function. IEEE Transactions on Neural Networks, 1(4), 296-298.
  • Sebe, N., Lew, M.S., Cohen, I., Garg, A., Huang, T. S. (2002). Emotion Recognition Using a Cauchy Naive Bayes Classifier. Object recognition supported by user interaction for service robots. Canada.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pınar Özel 0000-0002-9688-6293

Publication Date April 1, 2020
Published in Issue Year 2020

Cite

APA Özel, P. (2020). A Decision Support System to Assess the Masses in Breast Tissue using Classification Algorithms. Avrupa Bilim Ve Teknoloji Dergisi114-119. https://doi.org/10.31590/ejosat.araconf15