Review
BibTex RIS Cite

Damar İçi Stentlerde Malzeme Seçiminin ve Tasarımının Restenoz ve Diğer Stent Kaynaklı Problemlere Etkileri, Stentlerin Ekonomideki Yeri (Bir Genel Derleme)

Year 2020, , 204 - 215, 01.04.2020
https://doi.org/10.31590/ejosat.araconf26

Abstract

Damar yolu hastalıklarının tedavisinde kullanılan damar içi stentler, özellikle kardiyovasküler cerrahi alanında hayat kurtarıcı tedavi olarak önemli bir rol oynamaktadır. Stentlerin tasarımı ve üretiminde kullanılan malzemeler; operasyonel uygulama ve damar yolu tıkanıklıklarına çözüm sunma açısından oldukça etkilidir. İlk stent tasarımları 316L (düşük karbonlu medikal paslanmaz çelik) malzemelerin kullanıldığı kaplamasız metal stentler şeklinde geliştirilmiş ve günümüzde şekil hafızalı akıllı stent tasarımları, ilaç salınımlı stent teknolojileri ve biyobozunur stentler ortaya çıkmıştır. Yeni teknoloji stentlerin üretiminde polimerik malzemelerin yanı sıra nitinol, Ti alaşımları ve Mg tabanlı malzemeler öne çıksa da günümüzde halen 316L malzeme kullanılarak üretilen stentler de mevcuttur.
Korozif bir ortam olan damar yolu içerisine yerleştirilen kaplamasız metal stentlerde korozyon meydana gelmesi sonucunda stentin mekanik mukavemeti zayıflamakta ve bu da stentin kırılmasına yol açarak vasküler yolun tekrar tıkanmasına neden olabilmektedir. İlaç salınımlı stentlerde ise kullanılan antiproliferatif ajanların zamanla tükenmesi neticesinde stent kaynaklı tıkanma problemleri ile karşılaşılmaktadır. Biyobozunur stentlerde ise stentin bozunma süresinin kontrol altına alınması, çözüm bekleyen bir başka problemdir.
Vücut içerisine yerleştirilen stentlerde; üretimlerinde kullanılan malzeme fark etmeksizin, vücut sıvıları ile sürekli olan etkileşimleri sonucunda, zamanla tekrar damar tıkanıklığına yol açan problemler meydana gelmektedir. Dolayısıyla mevcut tüm stentlerin damar yolu hastalıklarına yalnızca geçici bir tedavi sağlayabildiği göze çarpmaktadır.
Stentlerin sunduğu tedavinin kalıcı olabilmesi için stent içi restenozun (yeniden tıkanma) giderilmesine yönelik çalışmalara büyük ölçüde ihtiyaç duyulmaktadır. Stent üretimi ve tasarımına yönelik güncel AR-GE çalışmaları bu doğrultuda ilerlemektedir. Bu derleme makalede, damar içi stentlerin gelişimi sürecinde ortaya çıkan farklı malzemelerden üretilmiş tasarımlar irdelenmektedir. Günümüzde klinik uygulamalarda kullanılan tüm stent gruplarında ortak olarak karşılaşılan restenoz problemine; stentin yüzey yapısının iyileştirilmesi yöntemleri ile çözüm sunulan yeni çalışmalar ortaya konulmaktadır.

Supporting Institution

Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FDK-2019-8754

Thanks

Bu çalışma Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FDK-2019-8754 numaralı proje ile desteklenmektedir.

References

  • N. Sarwar et al., Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215-2222.
  • Cutlip, D. E., Windecker, S., Mehran, R., Boam, A., Cohen, D. J., van Es, G. A., et. al. (2007). Clinical end points in coronary stent trials: a case for standardized definitions. Circulation, 115(17), 2344-2351.
  • Sanchez, O. D., Sakakura, K., Otsuka, F., Yahagi, K., Virmani, R., & Joner, M. (2014) Coronary stent evolutıon–from pathology to clınıc. EMJ Int. Cardiol., 107–116.
  • Halwani, D. O., Anderson, P. G., Lemons, J. E., Jordan, W. D., Anayiotos, A. S., & Brott, B. C. (2010). In-vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. Journal of Invasive Cardiology, 22(11), 528-535.
  • Iqbal, J., Gunn, J., & Serruys, P. W. (2013). Coronary stents: historical development, current status and future directions. British medical bulletin, 106(1), 193-211.
  • Huang, Q., Yang, Y., Hu, R., Lin, C., Sun, L., & Vogler, E. A. (2015). Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids and Surfaces B: Biointerfaces, 125, 134-141.
  • Lange, D., Bidnur, S., Hoag, N., & Chew, B. H. (2015). Ureteral stent-associated complications—where we are and where we are going. Nature Reviews Urology, 12(1), 17-25.
  • Lin, Q., Ding, X., Qiu, F., Song, X., Fu, G., & Ji, J. (2010). In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin–collagen multilayer. Biomaterials, 31(14), 4017-4025.
  • Balossino, R., Gervaso, F., Migliavacca, F., & Dubini, G. (2008). Effects of different stent designs on local hemodynamics in stented arteries. Journal of biomechanics, 41(5), 1053-1061.
  • Hamilos, M. I., Ostojic, M., Beleslin, B., Sagic, D., Mangovski, L., Stojkovic, S., et. al. (2008). Differential effects of drug-eluting stents on local endothelium-dependent coronary vasomotion. Journal of the American College of Cardiology, 51(22), 2123-2129.
  • Bhatt, D. L. (2012). EXAMINATION of new drug-eluting stents—top of the class!. The Lancet, 380(9852), 1453-1455.
  • Alfonso, F., Byrne, R. A., Rivero, F., & Kastrati, A. (2014). Current treatment of in-stent restenosis. Journal of the American College of Cardiology, 63(24), 2659-2673.
  • Hermawan, H., Dubé, D., & Mantovani, D. (2010). Developments in metallic biodegradable stents. Acta biomaterialia, 6(5), 1693-1697.
  • Moravej, M., & Mantovani, D. (2011). Biodegradable metals for cardiovascular stent application: interests and new opportunities. International journal of molecular sciences, 12(7), 4250-4270.
  • Bangalore, S., Toklu, B., Amoroso, N., Fusaro, M., Kumar, S., Hannan, E. L., et. al. (2013). Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. Bmj, 347, 1-20.
  • Schillinger, M., Sabeti, S., Loewe, C., Dick, P., Amighi, J., Mlekusch, W., et. al. (2006). Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. New England Journal of Medicine, 354(18), 1879-1888.
  • Lee, S. W., Park, S. W., Kim, Y. H., Yun, S. C., Park, D. W., Lee, C. W., et. al. (2011). A randomized, double-blind, multicenter comparison study of triple antiplatelet therapy with dual antiplatelet therapy to reduce restenosis after drug-eluting stent implantation in long coronary lesions: results from the DECLARE-LONG II (Drug-Eluting Stenting Followed by Cilostazol Treatment Reduces Late Restenosis in Patients with Long Coronary Lesions) trial. Journal of the American College of Cardiology, 57(11), 1264-1270.
  • Praveen Kumar, G., Jafary‐Zadeh, M., Tavakoli, R., & Cui, F. (2017). Feasibility of using bulk metallic glass for self‐expandable stent applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1874-1882.
  • Amanov, A., Lee, S. W., & Pyun, Y. S. (2017). Low friction and high strength of 316L stainless steel tubing for biomedical applications. Materials Science and Engineering: C, 71, 176-185.
  • Siontis, G. C., Stefanini, G. G., Mavridis, D., Siontis, K. C., Alfonso, F., Pérez-Vizcayno, M. J., et. al. (2015). Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. The Lancet, 386(9994), 655-664.
  • Palmerini, T., Benedetto, U., Biondi-Zoccai, G., Della Riva, D., Bacchi-Reggiani, L., Smits, P. C., et. al. (2015). Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Journal of the American College of Cardiology, 65(23), 2496-2507.
  • Bandar, A. M., Rosaire, M., & Stephen, Y. (2013). Coronary stents fracture: an engineering approach. Materials Sciences and Applications, 4(10), 606-621.
  • Menown, I. B., Noad, R., Garcia, E. J., & Meredith, I. (2010). The platinum chromium element stent platform: from alloy, to design, to clinical practice. Advances in therapy, 27(3), 129-141.
  • Chao, Z., Yaomu, X., Chufeng, L., & Conghua, L. (2017). The effect of mucin, fibrinogen and IgG on the corrosion behaviour of Ni–Ti alloy and stainless steel. Biometals, 30(3), 367-377.
  • O’Brien, B., Zafar, H., Ibrahim, A., Zafar, J., & Sharif, F. (2016). Coronary stent materials and coatings: a technology and performance update. Annals of biomedical engineering, 44(2), 523-535.
  • Weiss, S., & Mitevski, B. (2015). Microstructure and deformation of coronary stents from cocr-alloys with different designs. Materials, 8(5), 2467-2479.
  • Hanawa, T. (2012). Research and development of metals for medical devices based on clinical needs. Science and technology of advanced materials, 13(6), 064102.
  • Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta biomaterialia, 8(11), 3888-3903.
  • Kraus, T., Moszner, F., Fischerauer, S., Fiedler, M., Martinelli, E., Eichler, J., et. al. (2014). Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta biomaterialia, 10(7), 3346-3353.
  • Schinhammer, M., Gerber, I., Hänzi, A. C., & Uggowitzer, P. J. (2013). On the cytocompatibility of biodegradable Fe-based alloys. Materials Science and Engineering: C, 33(2), 782-789.
  • Grogan, J. A., Leen, S. B., & McHugh, P. E. (2012). Comparing coronary stent material performance on a common geometric platform through simulated bench testing. Journal of the mechanical behavior of biomedical materials, 12, 129-138.
  • Pinedo, M. A. (2016). Investigation of the Corrosion Behaviour of Bare and Polypyrrole-coated WE43 Magnesium Alloy for the Development of Biodegradable Implants. Doctoral dissertation, McGill University Libraries.
  • Azaouzi, M., Makradi, A., & Belouettar, S. (2012). Deployment of a self-expanding stent inside an artery: a finite element analysis. Materials & Design, 41, 410-420.
  • Siontis, G. C., Stefanini, G. G., Mavridis, D., Siontis, K. C., Alfonso, F., Pérez-Vizcayno, M. J., et. al. (2015). Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. The Lancet, 386(9994), 655-664.
  • Zhou, Z., Yin, Q., Xu, G., Yue, X., Zhang, R., Zhu, W., et. al. (2011). Influence of vessel size and tortuosity on in-stent restenosis after stent implantation in the vertebral artery ostium. Cardiovascular and interventional radiology, 34(3), 481-487.
  • Guo, Z., Zhou, F., Hao, J., & Liu, W. (2005). Stable biomimetic super-hydrophobic engineering materials. Journal of the American Chemical Society, 127(45), 15670-15671.
  • Callies, M., Chen, Y., Marty, F., Pépin, A., & Quéré, D. (2005). Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectronic engineering, 78, 100-105.
  • Hsieh, C. T., Chen, J. M., Kuo, R. R., Lin, T. S., & Wu, C. F. (2005). Influence of surface roughness on water-and oil-repellent surfaces coated with nanoparticles. Applied Surface Science, 240(1-4), 318-326.
  • Horgnies, M., & Chen, J. J. (2014). Superhydrophobic concrete surfaces with integrated microtexture. Cement and Concrete Composites, 52, 81-90.
  • Rao, A. P., & Rao, A. V. (2010). Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents. Journal of materials science, 45(1), 51-63.
  • O’Brien, B., & Carroll, W. (2009). The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta biomaterialia, 5(4), 945-958.
  • Tibbitt, M. W., Rodell, C. B., Burdick, J. A., & Anseth, K. S. (2015). Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences, 112(47), 14444-14451.
  • Lutter, C., Nothhaft, M., Rzany, A., Garlichs, C. D., & Cicha, I. (2015). Effect of specific surface microstructures on substrate endothelialisation and thrombogenicity: Importance for stent design. Clinical hemorheology and microcirculation, 59(3), 219-233.
  • Zhao, N., & Zhu, D. (2015). Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics, 7(1), 118-128.
  • Chen, Y., Xu, Z., Smith, C., & Sankar, J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia, 10(11), 4561-4573.
  • Puskas, J. E., Muñoz‐Robledo, L. G., Hoerr, R. A., Foley, J., Schmidt, S. P., Evancho‐Chapman, M., et. al. (2009). Drug‐eluting stent coatings. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(4), 451-462.
  • Alfonso, F., Pérez-Vizcayno, M. J., Cárdenas, A., del Blanco, B. G., García-Touchard, A., López-Minguéz, J. R., et. al. (2015). A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS IV randomized clinical trial. Journal of the American College of Cardiology, 66(1), 23-33.
  • Ali, M. T., Martin, K., Kumar, A. H., Cavallin, E., Pierrou, S., Gleeson, B. M., et. al. (2015). A novel CX3CR1 antagonist eluting stent reduces stenosis by targeting inflammation. Biomaterials, 69, 22-29.
  • Azarnoush, H., & Boulet, B. (2010, June). Angioplasty balloon deployment control. In Proceedings of the 2010 American Control Conference (pp. 3572-3573). IEEE.
  • G. V. Research, (2016). Drug Eluting Stent Market, By Polymer-based Coatings (Non-biodegradable Polymer-based, Biodegradable Polymer-based), Polymer-free Coatings (Micro Porous Surface, Microstructured Surface, Slotted Tubular Surface, Nanoporous Surface), By Application (Corona. Mark. Res. Rep. 1–89.
  • Lee, S. Y., Ahn, J. M., Mintz, G. S., Hur, S. H., Choi, S. Y., Kim, S. W., et. al. (2017). Characteristics of Earlier Versus Delayed Presentation of Very Late Drug‐Eluting Stent Thrombosis: An Optical Coherence Tomographic Study. Journal of the American Heart Association, 6(4), e005386.
  • Av, F., Joner, M., Nakazawa, G., Kolodgie, F., Newell, J., & MC, J. (2007). Pathological correlates of late drug-eluting stent thrombosis. Circulation, 115, 2435-2441.
  • Sukavaneshvar, S. (2017). Device thrombosis and pre-clinical blood flow models for assessing antithrombogenic efficacy of drug-device combinations. Advanced drug delivery reviews, 112, 24-34.
  • Montalescot, G., Brieger, D., Dalby, A. J., Park, S. J., & Mehran, R. (2015). Duration of dual antiplatelet therapy after coronary stenting: a review of the evidence. Journal of the American College of Cardiology, 66(7), 832-847.
  • Iwata, T. (2015). Biodegradable and bio‐based polymers: future prospects of eco‐friendly plastics. Angewandte Chemie International Edition, 54(11), 3210-3215.
  • Doppalapudi, S., Jain, A., Khan, W., & Domb, A. J. (2014). Biodegradable polymers—an overview. Polymers for Advanced Technologies, 25(5), 427-435.
  • Waksman, R., & Pakala, R. (2010). Biodegradable and bioabsorbable stents. Current pharmaceutical design, 16(36), 4041-4051.
  • Zhu, Y., Yang, K., Cheng, R., Xiang, Y., Yuan, T., Cheng, Y., et. al. (2017). The current status of biodegradable stent to treat benign luminal disease. Materials Today, 20(9), 516-529.
  • Hermawan, H., Dubé, D., & Mantovani, D. (2010). Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(1), 1-11.
  • Waksman, R., Pakala, R., Kuchulakanti, P. K., Baffour, R., Hellinga, D., Seabron, R., et. al. (2006). Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 68(4), 607-617.
  • Repici, A., Pagano, N., Rando, G., Carlino, A., Vitetta, E., Ferrara, E., et. al. (2013). A retrospective analysis of early and late outcome of biodegradable stent placement in the management of refractory anastomotic colorectal strictures. Surgical endoscopy, 27(7), 2487-2491.
  • Waksman, R. (2007). Promise and challenges of bioabsorbable stents. Catheterization and Cardiovascular Interventions, 70(3), 407-414.
  • Moore, J. E., Soares, J. S., & Rajagopal, K. R. (2010). Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovascular Engineering and Technology, 1(1), 52-65.
  • Byrne, R. A., Joner, M., & Kastrati, A. (2015). Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. European heart journal, 36(47), 3320-3331.
  • Gomez-Blazquez, I., Diaz, V. J., Fernandez-Barbeira, S., Fernández, G. B., Castro, A. D. M., Alonso, J. A. B., et. al. (2017). TCT-847 Everolimus-eluting bioresorbable scaffold for the treatment of coronary in-stent restenosis: immediate and 12 months clinical results. Journal of the American College of Cardiology, 70(18 Supplement), B342.
  • Gomez-Blazquez, I., Diaz, V. J., Fernandez-Barbeira, S., Fernández, G. B., Castro, A. D. M., Alonso, J. A. B., et. al. (2017). TCT-849 In-stent restenosis treated with everolimus-eluting bioresorbable scaffold: 1-year angiographic results. Journal of the American College of Cardiology, 70(18 Supplement), B343.
  • Katz, G., Harchandani, B., & Shah, B. (2015). Drug-eluting stents: the past, present, and future. Current atherosclerosis reports, 17(3), 11.
  • Kolk, A., Handschel, J., Drescher, W., Rothamel, D., Kloss, F., Blessmann, M., et. al. (2012). Current trends and future perspectives of bone substitute materials–from space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery, 40(8), 706-718.
  • Mahnken, A. H. (2012). CT imaging of coronary stents: past, present, and future. ISRN cardiology, 1-12.
  • Diao, C. L. Y. Z. Z., & Wang, J. Q. G. (2011). Research progress and future prospects for promoting endothelialization on endovascular stents and preventing restenosis. Journal of Medical and Biological Engineering, 31(5), 307-316.
  • Murphy, E. A., & Boyle, F. J. (2012). Reducing in-stent restenosis through novel stent flow field augmentation. Cardiovascular Engineering and Technology, 3(4), 353-373.
  • Tan, A., Alavijeh, M. S., & Seifalian, A. M. (2012). Next generation stent coatings: convergence of biotechnology and nanotechnology. Trends in biotechnology, 30(8), 406-409.
  • Moore, S. S., O’Sullivan, K. J., & Verdecchia, F. (2016). Shrinking the supply chain for implantable coronary stent devices. Annals of biomedical engineering, 44(2), 497-507.
  • G. V. Research. (2018). Coronary Stent Market Size, Share & Trend Analysis Report by Product (Bare Metal Stents, Drug Eluting Stents, Bioresorbable Vascular Scaffold), And Segment Forecasts 2018 – 2024. 1–82.
  • Im, S. H., Jung, Y., & Kim, S. H. (2017). Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta biomaterialia, 60, 3-22.
  • Kalra, A., Rehman, H., Khera, S., Thyagarajan, B., Bhatt, D. L., Kleiman, N. S., & Yeh, R. W. (2017). New-generation coronary stents: current data and future directions. Current atherosclerosis reports, 19(3), 14-23.
  • Regazzoli, D., Leone, P. P., Colombo, A., & Latib, A. (2017). New generation bioresorbable scaffold technologies: an update on novel devices and clinical results. Journal of thoracic disease, 9(Suppl 9), 979-985.
  • Foerst, J., Vorpahl, M., Engelhardt, M., Koehler, T., Tiroch, K., & Wessely, R. (2013). Evolution of coronary stents: from bare-metal stents to fully biodegradable, drug-eluting stents. Combination Products in Therapy, 3(1-2), 9-24.

Effects of Material Selection and Design on Restenosis and Other Stent Based Problems in Intravascular Stents, The Situation of Stents in the Economy (A Review)

Year 2020, , 204 - 215, 01.04.2020
https://doi.org/10.31590/ejosat.araconf26

Abstract

Intravascular stents used in the treatment of vascular diseases play an important role as a life-saving treatment especially in the field of cardiovascular surgery. Materials used in the design and manufacture of stents are very effective in terms of operational application and treatment of vascular occlusion. The first stent designs were developed in the form of bare metal stents using 316L (low carbon medical stainless steel) materials, and today, shape memory stent designs, drug eluting stent technologies and biodegradable stents have emerged. In addition to polymeric materials, nitinol, Ti alloys and Mg-based materials stand out in the production of new technology stents, there are still stents produced using 316L material today.
For bare metal stents placed in the vessel which is a corrosive environment, the mechanical strength of the stent weakens as a result of corrosion which may lead to breaking of the stent that result in blockage of the vascular pathway again. In drug eluting stents, as a result of the depletion of antiproliferative agents with time, stent-induced occlusion problems are encountered. In biodegradable stents, controlling the degradation duration of the stent is another problem that is waiting for a solution.
As a result of the continuous interaction of stents with body fluids, problems causing vascular occlusion occur over time in the stents which are placed inside the body regardless of the materials used in their production. Therefore, it is remarkable that all existing stent designs can only provide a temporary treatment to vascular diseases.
Researches which are aimed to overcome in-stent restenosis (re-occlusion) are highly necessary for making stent treatment to be permanent. Current R&D studies for stent production and design are progressing in this direction. In this review article, designs produced using various materials arising during the development of intravenous stents are examined. New studies that offer a solution to restenosis which is the common problem in all stent groups used in clinical practice today by using the techniques of improvement of the stent surface structure are presented.

Project Number

FDK-2019-8754

References

  • N. Sarwar et al., Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215-2222.
  • Cutlip, D. E., Windecker, S., Mehran, R., Boam, A., Cohen, D. J., van Es, G. A., et. al. (2007). Clinical end points in coronary stent trials: a case for standardized definitions. Circulation, 115(17), 2344-2351.
  • Sanchez, O. D., Sakakura, K., Otsuka, F., Yahagi, K., Virmani, R., & Joner, M. (2014) Coronary stent evolutıon–from pathology to clınıc. EMJ Int. Cardiol., 107–116.
  • Halwani, D. O., Anderson, P. G., Lemons, J. E., Jordan, W. D., Anayiotos, A. S., & Brott, B. C. (2010). In-vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. Journal of Invasive Cardiology, 22(11), 528-535.
  • Iqbal, J., Gunn, J., & Serruys, P. W. (2013). Coronary stents: historical development, current status and future directions. British medical bulletin, 106(1), 193-211.
  • Huang, Q., Yang, Y., Hu, R., Lin, C., Sun, L., & Vogler, E. A. (2015). Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids and Surfaces B: Biointerfaces, 125, 134-141.
  • Lange, D., Bidnur, S., Hoag, N., & Chew, B. H. (2015). Ureteral stent-associated complications—where we are and where we are going. Nature Reviews Urology, 12(1), 17-25.
  • Lin, Q., Ding, X., Qiu, F., Song, X., Fu, G., & Ji, J. (2010). In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin–collagen multilayer. Biomaterials, 31(14), 4017-4025.
  • Balossino, R., Gervaso, F., Migliavacca, F., & Dubini, G. (2008). Effects of different stent designs on local hemodynamics in stented arteries. Journal of biomechanics, 41(5), 1053-1061.
  • Hamilos, M. I., Ostojic, M., Beleslin, B., Sagic, D., Mangovski, L., Stojkovic, S., et. al. (2008). Differential effects of drug-eluting stents on local endothelium-dependent coronary vasomotion. Journal of the American College of Cardiology, 51(22), 2123-2129.
  • Bhatt, D. L. (2012). EXAMINATION of new drug-eluting stents—top of the class!. The Lancet, 380(9852), 1453-1455.
  • Alfonso, F., Byrne, R. A., Rivero, F., & Kastrati, A. (2014). Current treatment of in-stent restenosis. Journal of the American College of Cardiology, 63(24), 2659-2673.
  • Hermawan, H., Dubé, D., & Mantovani, D. (2010). Developments in metallic biodegradable stents. Acta biomaterialia, 6(5), 1693-1697.
  • Moravej, M., & Mantovani, D. (2011). Biodegradable metals for cardiovascular stent application: interests and new opportunities. International journal of molecular sciences, 12(7), 4250-4270.
  • Bangalore, S., Toklu, B., Amoroso, N., Fusaro, M., Kumar, S., Hannan, E. L., et. al. (2013). Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. Bmj, 347, 1-20.
  • Schillinger, M., Sabeti, S., Loewe, C., Dick, P., Amighi, J., Mlekusch, W., et. al. (2006). Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. New England Journal of Medicine, 354(18), 1879-1888.
  • Lee, S. W., Park, S. W., Kim, Y. H., Yun, S. C., Park, D. W., Lee, C. W., et. al. (2011). A randomized, double-blind, multicenter comparison study of triple antiplatelet therapy with dual antiplatelet therapy to reduce restenosis after drug-eluting stent implantation in long coronary lesions: results from the DECLARE-LONG II (Drug-Eluting Stenting Followed by Cilostazol Treatment Reduces Late Restenosis in Patients with Long Coronary Lesions) trial. Journal of the American College of Cardiology, 57(11), 1264-1270.
  • Praveen Kumar, G., Jafary‐Zadeh, M., Tavakoli, R., & Cui, F. (2017). Feasibility of using bulk metallic glass for self‐expandable stent applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1874-1882.
  • Amanov, A., Lee, S. W., & Pyun, Y. S. (2017). Low friction and high strength of 316L stainless steel tubing for biomedical applications. Materials Science and Engineering: C, 71, 176-185.
  • Siontis, G. C., Stefanini, G. G., Mavridis, D., Siontis, K. C., Alfonso, F., Pérez-Vizcayno, M. J., et. al. (2015). Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. The Lancet, 386(9994), 655-664.
  • Palmerini, T., Benedetto, U., Biondi-Zoccai, G., Della Riva, D., Bacchi-Reggiani, L., Smits, P. C., et. al. (2015). Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Journal of the American College of Cardiology, 65(23), 2496-2507.
  • Bandar, A. M., Rosaire, M., & Stephen, Y. (2013). Coronary stents fracture: an engineering approach. Materials Sciences and Applications, 4(10), 606-621.
  • Menown, I. B., Noad, R., Garcia, E. J., & Meredith, I. (2010). The platinum chromium element stent platform: from alloy, to design, to clinical practice. Advances in therapy, 27(3), 129-141.
  • Chao, Z., Yaomu, X., Chufeng, L., & Conghua, L. (2017). The effect of mucin, fibrinogen and IgG on the corrosion behaviour of Ni–Ti alloy and stainless steel. Biometals, 30(3), 367-377.
  • O’Brien, B., Zafar, H., Ibrahim, A., Zafar, J., & Sharif, F. (2016). Coronary stent materials and coatings: a technology and performance update. Annals of biomedical engineering, 44(2), 523-535.
  • Weiss, S., & Mitevski, B. (2015). Microstructure and deformation of coronary stents from cocr-alloys with different designs. Materials, 8(5), 2467-2479.
  • Hanawa, T. (2012). Research and development of metals for medical devices based on clinical needs. Science and technology of advanced materials, 13(6), 064102.
  • Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta biomaterialia, 8(11), 3888-3903.
  • Kraus, T., Moszner, F., Fischerauer, S., Fiedler, M., Martinelli, E., Eichler, J., et. al. (2014). Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta biomaterialia, 10(7), 3346-3353.
  • Schinhammer, M., Gerber, I., Hänzi, A. C., & Uggowitzer, P. J. (2013). On the cytocompatibility of biodegradable Fe-based alloys. Materials Science and Engineering: C, 33(2), 782-789.
  • Grogan, J. A., Leen, S. B., & McHugh, P. E. (2012). Comparing coronary stent material performance on a common geometric platform through simulated bench testing. Journal of the mechanical behavior of biomedical materials, 12, 129-138.
  • Pinedo, M. A. (2016). Investigation of the Corrosion Behaviour of Bare and Polypyrrole-coated WE43 Magnesium Alloy for the Development of Biodegradable Implants. Doctoral dissertation, McGill University Libraries.
  • Azaouzi, M., Makradi, A., & Belouettar, S. (2012). Deployment of a self-expanding stent inside an artery: a finite element analysis. Materials & Design, 41, 410-420.
  • Siontis, G. C., Stefanini, G. G., Mavridis, D., Siontis, K. C., Alfonso, F., Pérez-Vizcayno, M. J., et. al. (2015). Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. The Lancet, 386(9994), 655-664.
  • Zhou, Z., Yin, Q., Xu, G., Yue, X., Zhang, R., Zhu, W., et. al. (2011). Influence of vessel size and tortuosity on in-stent restenosis after stent implantation in the vertebral artery ostium. Cardiovascular and interventional radiology, 34(3), 481-487.
  • Guo, Z., Zhou, F., Hao, J., & Liu, W. (2005). Stable biomimetic super-hydrophobic engineering materials. Journal of the American Chemical Society, 127(45), 15670-15671.
  • Callies, M., Chen, Y., Marty, F., Pépin, A., & Quéré, D. (2005). Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectronic engineering, 78, 100-105.
  • Hsieh, C. T., Chen, J. M., Kuo, R. R., Lin, T. S., & Wu, C. F. (2005). Influence of surface roughness on water-and oil-repellent surfaces coated with nanoparticles. Applied Surface Science, 240(1-4), 318-326.
  • Horgnies, M., & Chen, J. J. (2014). Superhydrophobic concrete surfaces with integrated microtexture. Cement and Concrete Composites, 52, 81-90.
  • Rao, A. P., & Rao, A. V. (2010). Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents. Journal of materials science, 45(1), 51-63.
  • O’Brien, B., & Carroll, W. (2009). The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta biomaterialia, 5(4), 945-958.
  • Tibbitt, M. W., Rodell, C. B., Burdick, J. A., & Anseth, K. S. (2015). Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences, 112(47), 14444-14451.
  • Lutter, C., Nothhaft, M., Rzany, A., Garlichs, C. D., & Cicha, I. (2015). Effect of specific surface microstructures on substrate endothelialisation and thrombogenicity: Importance for stent design. Clinical hemorheology and microcirculation, 59(3), 219-233.
  • Zhao, N., & Zhu, D. (2015). Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics, 7(1), 118-128.
  • Chen, Y., Xu, Z., Smith, C., & Sankar, J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia, 10(11), 4561-4573.
  • Puskas, J. E., Muñoz‐Robledo, L. G., Hoerr, R. A., Foley, J., Schmidt, S. P., Evancho‐Chapman, M., et. al. (2009). Drug‐eluting stent coatings. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(4), 451-462.
  • Alfonso, F., Pérez-Vizcayno, M. J., Cárdenas, A., del Blanco, B. G., García-Touchard, A., López-Minguéz, J. R., et. al. (2015). A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS IV randomized clinical trial. Journal of the American College of Cardiology, 66(1), 23-33.
  • Ali, M. T., Martin, K., Kumar, A. H., Cavallin, E., Pierrou, S., Gleeson, B. M., et. al. (2015). A novel CX3CR1 antagonist eluting stent reduces stenosis by targeting inflammation. Biomaterials, 69, 22-29.
  • Azarnoush, H., & Boulet, B. (2010, June). Angioplasty balloon deployment control. In Proceedings of the 2010 American Control Conference (pp. 3572-3573). IEEE.
  • G. V. Research, (2016). Drug Eluting Stent Market, By Polymer-based Coatings (Non-biodegradable Polymer-based, Biodegradable Polymer-based), Polymer-free Coatings (Micro Porous Surface, Microstructured Surface, Slotted Tubular Surface, Nanoporous Surface), By Application (Corona. Mark. Res. Rep. 1–89.
  • Lee, S. Y., Ahn, J. M., Mintz, G. S., Hur, S. H., Choi, S. Y., Kim, S. W., et. al. (2017). Characteristics of Earlier Versus Delayed Presentation of Very Late Drug‐Eluting Stent Thrombosis: An Optical Coherence Tomographic Study. Journal of the American Heart Association, 6(4), e005386.
  • Av, F., Joner, M., Nakazawa, G., Kolodgie, F., Newell, J., & MC, J. (2007). Pathological correlates of late drug-eluting stent thrombosis. Circulation, 115, 2435-2441.
  • Sukavaneshvar, S. (2017). Device thrombosis and pre-clinical blood flow models for assessing antithrombogenic efficacy of drug-device combinations. Advanced drug delivery reviews, 112, 24-34.
  • Montalescot, G., Brieger, D., Dalby, A. J., Park, S. J., & Mehran, R. (2015). Duration of dual antiplatelet therapy after coronary stenting: a review of the evidence. Journal of the American College of Cardiology, 66(7), 832-847.
  • Iwata, T. (2015). Biodegradable and bio‐based polymers: future prospects of eco‐friendly plastics. Angewandte Chemie International Edition, 54(11), 3210-3215.
  • Doppalapudi, S., Jain, A., Khan, W., & Domb, A. J. (2014). Biodegradable polymers—an overview. Polymers for Advanced Technologies, 25(5), 427-435.
  • Waksman, R., & Pakala, R. (2010). Biodegradable and bioabsorbable stents. Current pharmaceutical design, 16(36), 4041-4051.
  • Zhu, Y., Yang, K., Cheng, R., Xiang, Y., Yuan, T., Cheng, Y., et. al. (2017). The current status of biodegradable stent to treat benign luminal disease. Materials Today, 20(9), 516-529.
  • Hermawan, H., Dubé, D., & Mantovani, D. (2010). Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(1), 1-11.
  • Waksman, R., Pakala, R., Kuchulakanti, P. K., Baffour, R., Hellinga, D., Seabron, R., et. al. (2006). Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 68(4), 607-617.
  • Repici, A., Pagano, N., Rando, G., Carlino, A., Vitetta, E., Ferrara, E., et. al. (2013). A retrospective analysis of early and late outcome of biodegradable stent placement in the management of refractory anastomotic colorectal strictures. Surgical endoscopy, 27(7), 2487-2491.
  • Waksman, R. (2007). Promise and challenges of bioabsorbable stents. Catheterization and Cardiovascular Interventions, 70(3), 407-414.
  • Moore, J. E., Soares, J. S., & Rajagopal, K. R. (2010). Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovascular Engineering and Technology, 1(1), 52-65.
  • Byrne, R. A., Joner, M., & Kastrati, A. (2015). Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. European heart journal, 36(47), 3320-3331.
  • Gomez-Blazquez, I., Diaz, V. J., Fernandez-Barbeira, S., Fernández, G. B., Castro, A. D. M., Alonso, J. A. B., et. al. (2017). TCT-847 Everolimus-eluting bioresorbable scaffold for the treatment of coronary in-stent restenosis: immediate and 12 months clinical results. Journal of the American College of Cardiology, 70(18 Supplement), B342.
  • Gomez-Blazquez, I., Diaz, V. J., Fernandez-Barbeira, S., Fernández, G. B., Castro, A. D. M., Alonso, J. A. B., et. al. (2017). TCT-849 In-stent restenosis treated with everolimus-eluting bioresorbable scaffold: 1-year angiographic results. Journal of the American College of Cardiology, 70(18 Supplement), B343.
  • Katz, G., Harchandani, B., & Shah, B. (2015). Drug-eluting stents: the past, present, and future. Current atherosclerosis reports, 17(3), 11.
  • Kolk, A., Handschel, J., Drescher, W., Rothamel, D., Kloss, F., Blessmann, M., et. al. (2012). Current trends and future perspectives of bone substitute materials–from space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery, 40(8), 706-718.
  • Mahnken, A. H. (2012). CT imaging of coronary stents: past, present, and future. ISRN cardiology, 1-12.
  • Diao, C. L. Y. Z. Z., & Wang, J. Q. G. (2011). Research progress and future prospects for promoting endothelialization on endovascular stents and preventing restenosis. Journal of Medical and Biological Engineering, 31(5), 307-316.
  • Murphy, E. A., & Boyle, F. J. (2012). Reducing in-stent restenosis through novel stent flow field augmentation. Cardiovascular Engineering and Technology, 3(4), 353-373.
  • Tan, A., Alavijeh, M. S., & Seifalian, A. M. (2012). Next generation stent coatings: convergence of biotechnology and nanotechnology. Trends in biotechnology, 30(8), 406-409.
  • Moore, S. S., O’Sullivan, K. J., & Verdecchia, F. (2016). Shrinking the supply chain for implantable coronary stent devices. Annals of biomedical engineering, 44(2), 497-507.
  • G. V. Research. (2018). Coronary Stent Market Size, Share & Trend Analysis Report by Product (Bare Metal Stents, Drug Eluting Stents, Bioresorbable Vascular Scaffold), And Segment Forecasts 2018 – 2024. 1–82.
  • Im, S. H., Jung, Y., & Kim, S. H. (2017). Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta biomaterialia, 60, 3-22.
  • Kalra, A., Rehman, H., Khera, S., Thyagarajan, B., Bhatt, D. L., Kleiman, N. S., & Yeh, R. W. (2017). New-generation coronary stents: current data and future directions. Current atherosclerosis reports, 19(3), 14-23.
  • Regazzoli, D., Leone, P. P., Colombo, A., & Latib, A. (2017). New generation bioresorbable scaffold technologies: an update on novel devices and clinical results. Journal of thoracic disease, 9(Suppl 9), 979-985.
  • Foerst, J., Vorpahl, M., Engelhardt, M., Koehler, T., Tiroch, K., & Wessely, R. (2013). Evolution of coronary stents: from bare-metal stents to fully biodegradable, drug-eluting stents. Combination Products in Therapy, 3(1-2), 9-24.
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gülşen Akdoğan 0000-0001-6473-8897

Ömer Burak İstanbullu 0000-0003-3150-9195

Project Number FDK-2019-8754
Publication Date April 1, 2020
Published in Issue Year 2020

Cite

APA Akdoğan, G., & İstanbullu, Ö. B. (2020). Damar İçi Stentlerde Malzeme Seçiminin ve Tasarımının Restenoz ve Diğer Stent Kaynaklı Problemlere Etkileri, Stentlerin Ekonomideki Yeri (Bir Genel Derleme). Avrupa Bilim Ve Teknoloji Dergisi204-215. https://doi.org/10.31590/ejosat.araconf26