Research Article
BibTex RIS Cite

K-Ortalamalar Kümeleme Yöntemi Kullanılarak ALS Hastalarında Dikkatin Olaya İlişkin Potansiyel Sinyalleri İle İncelenmesi

Year 2020, , 239 - 244, 01.04.2020
https://doi.org/10.31590/ejosat.araconf30

Abstract

Farklı nörolojik hastalıkların neden olduğu beyinde oluşan anormal durumlar dünya çapında birçok insanı etkilemektedir. Bu anormal durumlardan birisi de Amyotrofik lateral skleroz (ALS)’dur. ALS, beyin sapı adı verilen bölgede motor sinir hücrelerinin zarar görmesiyle ilerleyen fiziksel bozukluklara neden olan genellikle motor nöron hastalığı olarak bilinen bir hastalıktır. Beyin, dışarıdan gelen uyarıları algılar ve algılanan çok sayıda uyarıdan ilgili olanları dikkat mekanizması sayesinde seçer. Dikkat, çeşitli bilgi türlerinin, duygu ve düşünceler gibi aktivitelerin bir bölgeye yoğunlaştırılıp gerekli sürede ilgili uyarıcıların beyin tarafından seçilmesiyle oluşan bilişsel bir süreçtir. Elektroensefalogram (EEG) beynin dikkat mekanizmasında oluşan bu tür aktiviteleri ölçmek ve analiz etmek için önemli bir yere sahiptir. Dikkat analizi için son yıllarda yapılan çalışmalar Olaya İlişkin Potansiyel (OİP) sinyalleri üzerinedir. OİP sinyalleri, EEG sinyallerinde net olarak gözükmeyen P100, N200, P300 ve N400 gibi bileşenlere sahip olan küçük genlikli sinyallerdir. Bu nedenle OİP sinyallerini elde edebilmek için hedef uyaranın tekrarlanması, birçok kez EEG kaydının alınması gerekmektedir. Kayıt alınan hedef uyarana ait EEG sinyallerinin ortalamasının alınması sonucunda OİP sinyalleri elde edilmektedir. Gerçekleştirilen çalışmada, ALS hastaları ile sağlıklı kişilerin OİP sinyallerinden bir takım özelliklerin elde edilip ve görsel uyaranlara karşı dikkat analizinin k-ortalamalar kümeleme yöntemi ile incelenmesi amaçlanmıştır. K-ortalamalar kümeleme yöntemi ile yapılan inceleme sonucunda veriler 2 kümeye ayrılmış ve en yüksek başarı oranı %77.78 olarak hesaplanmıştır.

References

  • Oliveira, A. S. B., & Pereira, R. D. B. (2009). Amyotrophic lateral sclerosis (ALS): three letters that change the people's life. For ever. Arquivos de neuro-psiquiatria, 67(3A), 750-782.
  • Irak, M., & Karakaş, S. (2000). Dikkatin beynin nöroelektrik tepkilerine etkisi. Psikiyatr. Psikol. Psikofarmakol. Derg, 8(3), 182-197.
  • Smith, R. C. (2004). Electroencephalograph based brain computer interfaces (Doctoral dissertation, University College Dublin).
  • Teplan, M. (2002). Fundamentals of EEG measurement. Measurement science review, 2(2), 1-11.
  • Ceylan, M.E. (2002) Araştırma ve Klinik Uygulamada Biyolojik Psikiyatri Şizofreni, 1.cilt, 2. baskı, İstanbul 347-350
  • Coles, M. G., Smid, H. G., Scheffers, M. K., & Otten, L. J. (1995). Mental chronometry and the study of human information processing.
  • Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187-1188.
  • Dennis, T. A., & Chen, C. C. (2007). Neurophysiological mechanisms in the emotional modulation of attention: the interplay between threat sensitivity and attentional control. Biological psychology, 76(1-2), 1-10.
  • Güven, A., Dolu, N., Batbat, T., & Demir, M. (2015). Farklı Dikkat Durumlarının Uyarılmış Potansiyeller Üzerine Etkisinin P100 Dalgası ile Analizi Analysis of the Effect of Different Attention Types on Evoked Potentials by P100 Wave. Tıptekno’15, 15(18), 197-200.
  • Batbat, T., Güven, A., Dolu, N., & Demir, M. Farklı Dikkat Tiplerinin Uyarılmış Potansiyeller İle Sınıflandırılması Classification of Different Attention Types With Evoked Potentials. Tiptekno2016, ss.106-109
  • Güven, A., Dolu, N., Batbat, T., & Demir, M. (2015). İşitsel ve görsel uyaranların bölünmüş dikkate etkisinin P300 dalgası ile analizi. Ulusal Fizyoloji Kongresi, Çanakkale.
  • Chang, C. F., Liang, W. K., Lai, C. L., Hung, D. L., & Juan, C. H. (2016). Theta oscillation reveals the temporal involvement of different attentional networks in contingent reorienting. Frontiers in human neuroscience, 10, 264.
  • Rupom, A. I., & Patwary, A. B. (2019, February). P300 Speller Based ALS Detection Using Daubechies Wavelet Transform in Electroencephalograph. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-5). IEEE.
  • BNCI Horizon 2020 website. [Online]. Available: http://bnci-horizon 2020.eu/database/data-sets
  • Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage, 34(4), 1600-1611.
  • Aricò, P., Aloise, F., Schettini, F., Salinari, S., Mattia, D., & Cincotti, F. (2014). Influence of P300 latency jitter on event related potential-based brain–computer interface performance. Journal of neural engineering, 11(3), 035008.
  • Riccio, A., Simione, L., Schettini, F., Pizzimenti, A., Inghilleri, M., Olivetti Belardinelli, M., & Cincotti, F. (2013). Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Frontiers in human neuroscience, 7, 732.
  • Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transactions on biomedical engineering, 51(6), 1034-1043.
  • Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and clinical Neurophysiology, 70(6), 510-523.
  • San Martin, R., & Huettel, S. A. (2013). Cognitive functions as revealed by imaging of the human brain. Neuroscience in the 21st century, 2213-2238.
  • Jin, J., Sellers, E. W., Zhou, S., Zhang, Y., Wang, X., & Cichocki, A. (2015). A P300 brain–computer interface based on a modification of the mismatch negativity paradigm. International journal of neural systems, 25(03), 1550011.
  • Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 45(1), 152-170.
  • Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural networks, 16(3), 645-678.
  • Karagöz, M., Alkaç, Ü.İ., Ergen, N., Eradamlar, N., & Alpkan, l. (2005). Majör Depresyonda Elektrofizyolojik (P300) Yöntemler. Düşünen Adam, (18), 120-128.
  • Riccio, A., Schettini, F., Simione, L., Pizzimenti, A., Inghilleri, M., Olivetti-Belardinelli, M., Mattia, D. & Cincotti, F. (2018). On the Relationship Between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis. Frontiers in human neuroscience, 12, 165.

Analysis of Attention to Potential Signals of ALS Patients by Using the K-Means Clustering Method

Year 2020, , 239 - 244, 01.04.2020
https://doi.org/10.31590/ejosat.araconf30

Abstract

Abnormal conditions occurring in the brain caused by different neurological diseases affect many people worldwide. One of these abnormal conditions is Amyotrophic lateral sclerosis (ALS). ALS is a disease commonly known as motor neuron disease, which causes physical disorders in the area called brainstem, caused by damage to motor nerve cells. The brain perceives the stimuli coming from the outside and selects the related ones from the many perceived stimuli through its attention mechanism. Attention is a cognitive process that is formed by concentrating various types of information, activities such as emotions and thoughts to a region and selecting the relevant stimulants by the brain in the required time. The Electroencephalography (EEG) has an important place to measure and analyze such activities occurring in the brain's mind. Recent studies for attention analysis are on Event-Related Potential (ERP) signals. ERP signals are small amplitude signals with components such as P100, N200, P300 and N400, which are not clearly visible in EEG signals.
For this reason, in order to obtain the ERP signals, the target stimulus must be repeated and EEG recording must be obtained many times. As a result of averaging the EEG signals of the recorded target stimulus, ERP signals are obtained. In the study carried out, it was aimed to obtain some features from the ERP signals of ALS patients and healthy people and to analyze attention analysis against visual stimuli using the k-means clustering method. As a result of the examination made with the K-averages clustering method, the data were divided into 2 clusters and the highest success rate was calculated as 77.78%.

References

  • Oliveira, A. S. B., & Pereira, R. D. B. (2009). Amyotrophic lateral sclerosis (ALS): three letters that change the people's life. For ever. Arquivos de neuro-psiquiatria, 67(3A), 750-782.
  • Irak, M., & Karakaş, S. (2000). Dikkatin beynin nöroelektrik tepkilerine etkisi. Psikiyatr. Psikol. Psikofarmakol. Derg, 8(3), 182-197.
  • Smith, R. C. (2004). Electroencephalograph based brain computer interfaces (Doctoral dissertation, University College Dublin).
  • Teplan, M. (2002). Fundamentals of EEG measurement. Measurement science review, 2(2), 1-11.
  • Ceylan, M.E. (2002) Araştırma ve Klinik Uygulamada Biyolojik Psikiyatri Şizofreni, 1.cilt, 2. baskı, İstanbul 347-350
  • Coles, M. G., Smid, H. G., Scheffers, M. K., & Otten, L. J. (1995). Mental chronometry and the study of human information processing.
  • Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187-1188.
  • Dennis, T. A., & Chen, C. C. (2007). Neurophysiological mechanisms in the emotional modulation of attention: the interplay between threat sensitivity and attentional control. Biological psychology, 76(1-2), 1-10.
  • Güven, A., Dolu, N., Batbat, T., & Demir, M. (2015). Farklı Dikkat Durumlarının Uyarılmış Potansiyeller Üzerine Etkisinin P100 Dalgası ile Analizi Analysis of the Effect of Different Attention Types on Evoked Potentials by P100 Wave. Tıptekno’15, 15(18), 197-200.
  • Batbat, T., Güven, A., Dolu, N., & Demir, M. Farklı Dikkat Tiplerinin Uyarılmış Potansiyeller İle Sınıflandırılması Classification of Different Attention Types With Evoked Potentials. Tiptekno2016, ss.106-109
  • Güven, A., Dolu, N., Batbat, T., & Demir, M. (2015). İşitsel ve görsel uyaranların bölünmüş dikkate etkisinin P300 dalgası ile analizi. Ulusal Fizyoloji Kongresi, Çanakkale.
  • Chang, C. F., Liang, W. K., Lai, C. L., Hung, D. L., & Juan, C. H. (2016). Theta oscillation reveals the temporal involvement of different attentional networks in contingent reorienting. Frontiers in human neuroscience, 10, 264.
  • Rupom, A. I., & Patwary, A. B. (2019, February). P300 Speller Based ALS Detection Using Daubechies Wavelet Transform in Electroencephalograph. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-5). IEEE.
  • BNCI Horizon 2020 website. [Online]. Available: http://bnci-horizon 2020.eu/database/data-sets
  • Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage, 34(4), 1600-1611.
  • Aricò, P., Aloise, F., Schettini, F., Salinari, S., Mattia, D., & Cincotti, F. (2014). Influence of P300 latency jitter on event related potential-based brain–computer interface performance. Journal of neural engineering, 11(3), 035008.
  • Riccio, A., Simione, L., Schettini, F., Pizzimenti, A., Inghilleri, M., Olivetti Belardinelli, M., & Cincotti, F. (2013). Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Frontiers in human neuroscience, 7, 732.
  • Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transactions on biomedical engineering, 51(6), 1034-1043.
  • Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and clinical Neurophysiology, 70(6), 510-523.
  • San Martin, R., & Huettel, S. A. (2013). Cognitive functions as revealed by imaging of the human brain. Neuroscience in the 21st century, 2213-2238.
  • Jin, J., Sellers, E. W., Zhou, S., Zhang, Y., Wang, X., & Cichocki, A. (2015). A P300 brain–computer interface based on a modification of the mismatch negativity paradigm. International journal of neural systems, 25(03), 1550011.
  • Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 45(1), 152-170.
  • Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural networks, 16(3), 645-678.
  • Karagöz, M., Alkaç, Ü.İ., Ergen, N., Eradamlar, N., & Alpkan, l. (2005). Majör Depresyonda Elektrofizyolojik (P300) Yöntemler. Düşünen Adam, (18), 120-128.
  • Riccio, A., Schettini, F., Simione, L., Pizzimenti, A., Inghilleri, M., Olivetti-Belardinelli, M., Mattia, D. & Cincotti, F. (2018). On the Relationship Between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis. Frontiers in human neuroscience, 12, 165.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fırat Orhanbulucu 0000-0003-4558-9667

Fatma Latifoğlu 0000-0003-2018-9616

Abdullah Baş 0000-0002-7606-8314

Publication Date April 1, 2020
Published in Issue Year 2020

Cite

APA Orhanbulucu, F., Latifoğlu, F., & Baş, A. (2020). K-Ortalamalar Kümeleme Yöntemi Kullanılarak ALS Hastalarında Dikkatin Olaya İlişkin Potansiyel Sinyalleri İle İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi239-244. https://doi.org/10.31590/ejosat.araconf30