Research Article
BibTex RIS Cite

Varsayılan Mod ve Fronto Parietal Ağlarında Fonksiyonel Bağlanabilirlik ile Cinsiyet Farklılıklarının İncelenmesi

Year 2020, , 298 - 303, 01.04.2020
https://doi.org/10.31590/ejosat.araconf38

Abstract

Cinsiyetin beynin anatomisinde, işlevinde ve aynı zamanda insan davranışlarında kritik bir rol oynadığı bilinmektedir. Erkek ve kadın beyinleri arasındaki fonksiyonel bağlantıdaki farklılıkları belirlemek, birçok nörolojik ve psikiyatrik durumun prevelansını ve semptomolojisini açıklamaya yardımcı olacaktır. Dinlenme sırasında beynin görüntülenmesi, fMRG sinyalinde fonksiyonel olarak ilişkili alanlar arasında geçici olarak korelasyona sahip olan spontan düşük frekanslı dalgalanmalar (<0.1 Hz) ortaya çıkarır. Fonksiyonel bağlanabilirlik (FC) olarak adlandırılan bu korelasyonlar, tohum voksel analizi kullanılarak elde edilmiştir. FC analizleri, dinlenme durumu fonksiyonel manyetik rezonans görüntüleme (dd-fMRG) kullanılarak 19 ila 41 yaş arasındaki sağ elini kullanan 50 sağlıklı birey (25 kadın, 25 erkek) dahil edilerek kadın ve erkek beyinleri arasında karşılaştırılmıştır. Bu çalışmadaki veriler, herkese açık olarak paylaşılan 1000 Functional Connectomes Project kapsamındaki Newyork_a veri setinden sağlanmıştır. Çalışmamızda dinlenim durumu ağları arasından merkezi bir rolü olduğu gösterilen ve en çok çalışılan ağ olan varsayılan mod ağında ve bilişsel ağı en iyi yansıtan fronto parietal ağında cinsiyet farklılıkları incelenmiştir. Çalışmamızın bazı tohum bölgelerinde hem kadınlarda hem erkeklerde daha yüksek FC gösteren bölgeler bulunmuştur. DMN’de pozitif korelasyon gösteren tohum bölgeleri MPFC ve LP (L) iken, negatif korelasyon gösteren tohum bölgesi LP (L)’dir. FPN’de pozitif korelasyon gösteren tohum bölgeleri ise LPFC (L), LPFC(R) ve PPC (L) iken, negatif korelasyon gösteren tohum bölgeleri ise LPFC (R), PPC (L) ve PPC (R)’dır. Çalışmamızın sonucunda en dikkat çekiçi olan bulgu pozitif korelasyon gözlemlenen tüm bölgelerimizin beyincik ile ilişkili olmasıdır. Negatif korelasyon gösteren bölgeler ile ilişkili bölgelerimiz beyinde dağınık yerleşim göstermiştir. Çalışmamız nörolojik ve nöropsikiyatrik bozukluklar incelenirken beyin ağlarındaki cinsiyet farklılıkları göz önünde bulundurulması gerektiğini ortaya koymuştur. Ek olarak, sonuçlarımız beyin ağlarındaki cinsiyet farklılıklarının daha fazla araştırma yapılması gerektiğini göstermiştir.

References

  • Jazin E, Cahill L (2010) Sex differences in molecular neuroscience: From fruit flies to humans. Nat Rev Neurosci 11(1):9–17.
  • Cosgrove KP, Mazure CM, Staley JK (2007) Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry 62:847–855.
  • Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., ... & Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences, 111(2), 823-828.
  • Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., ... & Dogonowski, A. M. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734-4739.
  • Weissman‐Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD (2010): Cognitive and default‐mode resting state networks: Do male and female brains “rest” differently? Hum Brain Mapp.
  • Biswal B Yetkin FZ Haughton VM Hyde JS. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 34:537–541
  • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 2(1‐2), 56-78.
  • Gong, G., He, Y., & Evans, A. C. (2011). Brain connectivity: gender makes a difference. The Neuroscientist, 17(5), 575-591.
  • Mak, L. E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S. H., & Milev, R. (2017). The default mode network in healthy individuals: a systematic review and meta-analysis. Brain connectivity, 7(1), 25-33.
  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253-258.
  • Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. Neuroreport, 17(16), 1687-1690.
  • Laufs, H., Hamandi, K., Salek‐Haddadi, A., Kleinschmidt, A. K., Duncan, J. S., & Lemieux, L. (2007). Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Human brain mapping, 28(10), 1023-1032.
  • Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Human brain mapping, 26(4), 231-239.
  • Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., ... & Michael, A. M. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in systems neuroscience, 5, 2.
  • Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in cognitive sciences, 12(3), 99-105.
  • Miller EK, Cohen JD (2001): An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167–202
  • Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues in clinical neuroscience, 20(2), 133.
  • Sheffield, J. M., Repovs, G., Harms, M. P., Carter, C. S., Gold, J. M., MacDonald III, A. W., ... & Barch, D. M. (2015). Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia, 73, 82-93.
  • Cservenka A., Stroup M. L., Etkin A., Nagel B. J. (2015). The effects of age, sex, and hormones on emotional conflict-related brain response during adolescence. Brain Cogn. 99, 135–150. 10.1016/j.bandc.2015.06.002
  • Filippi M, Valsasina P, Misci P, Falini A, Comi G, et al. (2012) The organization of intrinsic brain activity differs between genders: A resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp34: 1330–1343.].
  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magnetic resonance in medicine, 34(4), 537-541.
  • Smitha, K. A., Akhil Raja, K., Arun, K. M., Rajesh, P. G., Thomas, B., Kapilamoorthy, T. R., & Kesavadas, C. (2017). Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. The neuroradiology journal, 30(4), 305-317.
  • Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity, 2(3), 125-141.
  • Cahill, L. (2006). Why sex matters for neuroscience. Nature reviews neuroscience, 7(6), 477.
  • Bluhm, R. L., Osuch, E. A., Lanius, R. A., Boksman, K., Neufeld, R. W., Théberge, J., & Williamson, P. (2008). Default mode network connectivity: effects of age, sex, and analytic approach. Neuroreport, 19(8), 887-891.
  • Alarcón, G., Pfeifer, J. H., Fair, D. A., & Nagel, B. J. (2018). Adolescent gender differences in cognitive control performance and functional connectivity between default mode and fronto-parietal networks within a self-referential context. Frontiers in behavioral neuroscience, 12, 73.

Analysis of Gender Differences with Functional Connectivity and Default Mode Network and Fronto-parietal Network

Year 2020, , 298 - 303, 01.04.2020
https://doi.org/10.31590/ejosat.araconf38

Abstract

Gender is known to play a critical role in the brain's anatomy, function, and also in human behavior. Identifying differences in functional connectivity between male and female brains will help explain the prevalence and symptomatology of many neurological and psychiatric conditions. Imaging of the brain during rest reveals spontaneous low-frequency fluctuations (<0.1 Hz) that have a temporal correlation between functionally related areas in the fMRI signal. These correlations, called functional connectivity (FC), were obtained using seed to voxel analysis. FC analyzes were compared between male and female brains, including 50 healthy individuals (25 females, 25 males) using the right hand between aged 19 to 41 years old, using resting state functional magnetic resonance imaging (rs-fMRI). Data in this study was obtained from the Newyork_a data set under the 1000 Functional Connectomes Project shared publicly. In our study, gender differences in the default mode network, which is shown as having a central role among the rest state networks, and in the fronto parietal network that best reflects the cognitive network, were examined. In some seed regions of our study, regions showing higher FC were found in both female and male. While the seed regions showing positive correlation in DMN are MPFC and LP (L), the seed region showing negative correlation is LP (L). The seed regions that show positive correlation in FPN are LPFC (L), LPFC (R) and PPC (L), while the seed regions that show negative correlation are LPFC (R), PPC (L) and PPC (R). As the result of our study, the most important finding is that all of our regions with positive correlation were associated with the cerebellum. Our regions associated with regions that show negative correlation showed scattered settlement in the brain. Our study revealed that gender differences in brain networks should be considered when examining neurological and neuropsychiatric disorders. In addition, our results have shown that gender differences in brain networks require more research.

References

  • Jazin E, Cahill L (2010) Sex differences in molecular neuroscience: From fruit flies to humans. Nat Rev Neurosci 11(1):9–17.
  • Cosgrove KP, Mazure CM, Staley JK (2007) Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry 62:847–855.
  • Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., ... & Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences, 111(2), 823-828.
  • Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., ... & Dogonowski, A. M. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734-4739.
  • Weissman‐Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD (2010): Cognitive and default‐mode resting state networks: Do male and female brains “rest” differently? Hum Brain Mapp.
  • Biswal B Yetkin FZ Haughton VM Hyde JS. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 34:537–541
  • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 2(1‐2), 56-78.
  • Gong, G., He, Y., & Evans, A. C. (2011). Brain connectivity: gender makes a difference. The Neuroscientist, 17(5), 575-591.
  • Mak, L. E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S. H., & Milev, R. (2017). The default mode network in healthy individuals: a systematic review and meta-analysis. Brain connectivity, 7(1), 25-33.
  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253-258.
  • Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. Neuroreport, 17(16), 1687-1690.
  • Laufs, H., Hamandi, K., Salek‐Haddadi, A., Kleinschmidt, A. K., Duncan, J. S., & Lemieux, L. (2007). Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Human brain mapping, 28(10), 1023-1032.
  • Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Human brain mapping, 26(4), 231-239.
  • Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., ... & Michael, A. M. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in systems neuroscience, 5, 2.
  • Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in cognitive sciences, 12(3), 99-105.
  • Miller EK, Cohen JD (2001): An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167–202
  • Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues in clinical neuroscience, 20(2), 133.
  • Sheffield, J. M., Repovs, G., Harms, M. P., Carter, C. S., Gold, J. M., MacDonald III, A. W., ... & Barch, D. M. (2015). Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia, 73, 82-93.
  • Cservenka A., Stroup M. L., Etkin A., Nagel B. J. (2015). The effects of age, sex, and hormones on emotional conflict-related brain response during adolescence. Brain Cogn. 99, 135–150. 10.1016/j.bandc.2015.06.002
  • Filippi M, Valsasina P, Misci P, Falini A, Comi G, et al. (2012) The organization of intrinsic brain activity differs between genders: A resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp34: 1330–1343.].
  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magnetic resonance in medicine, 34(4), 537-541.
  • Smitha, K. A., Akhil Raja, K., Arun, K. M., Rajesh, P. G., Thomas, B., Kapilamoorthy, T. R., & Kesavadas, C. (2017). Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. The neuroradiology journal, 30(4), 305-317.
  • Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity, 2(3), 125-141.
  • Cahill, L. (2006). Why sex matters for neuroscience. Nature reviews neuroscience, 7(6), 477.
  • Bluhm, R. L., Osuch, E. A., Lanius, R. A., Boksman, K., Neufeld, R. W., Théberge, J., & Williamson, P. (2008). Default mode network connectivity: effects of age, sex, and analytic approach. Neuroreport, 19(8), 887-891.
  • Alarcón, G., Pfeifer, J. H., Fair, D. A., & Nagel, B. J. (2018). Adolescent gender differences in cognitive control performance and functional connectivity between default mode and fronto-parietal networks within a self-referential context. Frontiers in behavioral neuroscience, 12, 73.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İrem Acer This is me

Semra İçer 0000-0002-3323-9953

Publication Date April 1, 2020
Published in Issue Year 2020

Cite

APA Acer, İ., & İçer, S. (2020). Analysis of Gender Differences with Functional Connectivity and Default Mode Network and Fronto-parietal Network. Avrupa Bilim Ve Teknoloji Dergisi298-303. https://doi.org/10.31590/ejosat.araconf38