Research Article
BibTex RIS Cite

5G Ağları için Alttaş Malzemesi ve Deltoid Şekilli Yuvaların Yama Antenler Üzerindeki Etkilerinin 37 GHz ve 39 GHz’de Karşılaştırmalı Analizi

Year 2020, , 405 - 411, 01.04.2020
https://doi.org/10.31590/ejosat.araconf53

Abstract

Bu çalışmada deltoid şekilli yarıklara sahip iki dikdörtgen yama anten önerilmiştir. Farklı frekanslar ve farklı alttaşlar için yarıkların etkilerinin gösterilmesi amaçlanmaktadır. Antenler, milimetre dalga bantlarında öngörülen 5G frekansları arasında yer alan 37 GHz ve 39 GHz için tasarlanmıştır. Tasarımlar için RT5880 ve RO3003 dielektrik alttaşlar, malzemelerin etkilerini elde etmek üzere her anten için ayrı ayrı değerlendirilmiştir. Farklı çalışma frekanslarında ve farklı alttaş malzemelerinde, deltoid şekilli yarıklar, geri dönüş kayıplarında farklı seviyelerde iyileşmeler sağlar. RT5880 ile tasarlanan yarıklara sahip antenin geri dönüş kayıplarında, 37 GHz için 18,81 dB ve 39 GHz için 16,37 dB iyileşme elde edilmiştir. Bu değerler yüzde olarak 37 GHz için %44,47 ve 39 GHz için %36,14’lük bir iyileşmeye karşılık gelir. RO3003 ile tasarlanan yarıklara sahip antenin geri dönüş kayıplarında, 37 GHz için 25,17 dB ve 39 GHz için 27,54 dB iyileşme elde edilmiştir. Bu değerler benzer şekilde yüzde olarak 37 GHz için %58,44 ve 39 GHz için %78,80’lik bir iyileşme anlamına gelir. Sonuçlar, anten tasarımcıları için, antenlerin milimetre dalga bantlarındaki farklı alttaş malzemeleri için farklı frekanslarda aynı modifikasyonlara nasıl tepki verdiğini göstermesi açısından önem taşımaktadır.

References

  • Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-1655.
  • Ayyappan, M., Manoj, B., & Rodrigues, S. (2016, March). Low return loss circular microstrip patch antenna at 5.8 GHz for wide-band applications. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 3023-3026). IEEE.
  • Balanis, C. A. (2005) Antenna Theory Analysis and Design, New Jersey: J. Wiley & Sons. Computer Simulation Technology (CST) Microwave Studio, Ver. 2016, Framingham, MA, USA, 2016. Federal Communication Commission Website. (2016). Available: https://www.fcc.gov
  • Jilani, S. F. & Alomainy, A. (2016) Milimeter-wave t-shaped antenna with defected ground structures for 5g wireless networks. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK.
  • Mishra, S., Wankhade, P., & Sahu, A. (2016, March). Design and analysis of T and U shaped slots with truncated corner rectangular microstrip patch antenna for return loss enhancement. In 2016 Symposium on Colossal Data Analysis and Networking (CDAN) (pp. 1-7). IEEE.
  • Outerelo, D. A. Alejos, A. V. Sanchez, M. G. & Isasa, M. V. (2015) Microstrip antenna for 5g broadband communications: overview of design issues,” International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada.
  • Rozenfeld, M. (2017). Getting to Know 5G. IEEE The Institute, 41(1). RT5870/5880, RO3003 High Frequency Laminates Data Sheet. Rogers Corporation, AZ, USA.
  • Saxena, A., Joshi, S., Gupta, A., Saxena, S., & Kumar, D. (2016, May). Gain and bandwidth enhancement of CPW-fed patch antenna for Wideband applications. In 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 1622-1625). IEEE.
  • Verma, S., Mahajan, L., Kumar, R., Saini, H. S., & Kumar, N. (2016, September). A small microstrip patch antenna for future 5G applications. In 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 460-463). IEEE.
  • Yassin, A. A. Saeed, R. A. & Mokhtar, R. A. (2014) Dual-band microstrip patch antenna design using c-slot for wi-fi and wi-max applications. International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia.

Comparative Analysis of the Effects of the Substrate Material and Deltoid Shaped Slots on Patch Antennas for 5G Networks at 37 GHz and 39 GHz

Year 2020, , 405 - 411, 01.04.2020
https://doi.org/10.31590/ejosat.araconf53

Abstract

In this study two rectangular patch antennas with deltoid shaped slots are proposed. It is aimed to show the effects of the slots for different frequencies and different dielectrics. The antennas are designed for 37 GHz and 39 GHz which are among the projected 5G frequencies in millimeter wave bands. For the designs RT5880 and RO3003 dielectric substrates are selected for each antenna to obtain the effects of the materials. At different operating frequencies and different substrate materials, the deltoid shaped slots result in different amounts of improvements in return loss levels. The antenna with the slots designed with RT5880 has a return loss reduction of 18.81 dB for 37 GHz and 16.37 dB for 39 GHz which means a progress in S11 levels of 44.47% for 37 GHz and 36.14% for 39 GHz. The antenna with the slots designed with RO3003 has a return loss reduction of 25.17 dB for 37 GHz and 27.54 dB for 39 GHz which means a progress in S11 levels of 58.44% for 37 GHz and 78.80% for 39 GHz. The results can give a good insight for antenna designers how the antennas react to same modifications at different frequencies for different substrate materials in millimeter wave bands.

References

  • Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-1655.
  • Ayyappan, M., Manoj, B., & Rodrigues, S. (2016, March). Low return loss circular microstrip patch antenna at 5.8 GHz for wide-band applications. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 3023-3026). IEEE.
  • Balanis, C. A. (2005) Antenna Theory Analysis and Design, New Jersey: J. Wiley & Sons. Computer Simulation Technology (CST) Microwave Studio, Ver. 2016, Framingham, MA, USA, 2016. Federal Communication Commission Website. (2016). Available: https://www.fcc.gov
  • Jilani, S. F. & Alomainy, A. (2016) Milimeter-wave t-shaped antenna with defected ground structures for 5g wireless networks. Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK.
  • Mishra, S., Wankhade, P., & Sahu, A. (2016, March). Design and analysis of T and U shaped slots with truncated corner rectangular microstrip patch antenna for return loss enhancement. In 2016 Symposium on Colossal Data Analysis and Networking (CDAN) (pp. 1-7). IEEE.
  • Outerelo, D. A. Alejos, A. V. Sanchez, M. G. & Isasa, M. V. (2015) Microstrip antenna for 5g broadband communications: overview of design issues,” International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada.
  • Rozenfeld, M. (2017). Getting to Know 5G. IEEE The Institute, 41(1). RT5870/5880, RO3003 High Frequency Laminates Data Sheet. Rogers Corporation, AZ, USA.
  • Saxena, A., Joshi, S., Gupta, A., Saxena, S., & Kumar, D. (2016, May). Gain and bandwidth enhancement of CPW-fed patch antenna for Wideband applications. In 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 1622-1625). IEEE.
  • Verma, S., Mahajan, L., Kumar, R., Saini, H. S., & Kumar, N. (2016, September). A small microstrip patch antenna for future 5G applications. In 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 460-463). IEEE.
  • Yassin, A. A. Saeed, R. A. & Mokhtar, R. A. (2014) Dual-band microstrip patch antenna design using c-slot for wi-fi and wi-max applications. International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Barış Gürcan Hakanoğlu 0000-0002-5157-8414

Burak Koç This is me 0000-0001-9774-4126

Hüsnü Yalduz 0000-0001-9776-3896

Şekip Esat Hayber 0000-0003-0062-3817

Mustafa Türkmen 0000-0002-5257-8256

Publication Date April 1, 2020
Published in Issue Year 2020

Cite

APA Hakanoğlu, B. G., Koç, B., Yalduz, H., Hayber, Ş. E., et al. (2020). Comparative Analysis of the Effects of the Substrate Material and Deltoid Shaped Slots on Patch Antennas for 5G Networks at 37 GHz and 39 GHz. Avrupa Bilim Ve Teknoloji Dergisi405-411. https://doi.org/10.31590/ejosat.araconf53