Research Article
BibTex RIS Cite

Kentiçi Kavşakların Mikrosimülasyon Yöntemiyle Modellenmesi: Erzurum İli Örneği

Year 2020, , 444 - 451, 01.04.2020
https://doi.org/10.31590/ejosat.araconf58

Abstract

Gelişen teknolojiye bağlı olarak dünya genelinde olduğu gibi Erzurum il merkezinde de araç sayısında artış meydana gelmiş ve Erzurum kent içi ana arter ve ana arterleri üzerinde bulunan kavşaklarda trafik hacminin artmasına sebep olmuştur. Erzurum’da son beş yılda motorlu taşıt sayısı 16.762 artarak 119.108’e ulaşmıştır. Artan trafik hacmi özellikle şehrin en merkezi kavşağı konumunda olan Tebrizkapı Kavşağı’nı etkilemiştir. Tebrizkapı Kavşağı kentin en işlek merkezi olan Cumhuriyet Caddesi, Karskapı Caddesi ve en önemli alışveriş merkezlerinden biri olan Taş Mağazalar Caddesi arasında kaldığından özellikle sabah mesai başlangıç saatleri ve akşam mesai bitim saatlerinde ciddi trafik yoğunluklarına maruz kalmaktadır. Sayım sonuçları doğrultusunda Tebrizkapı Kavşağı’nda sabah zirve saati 07:45 ile 08:45 ve akşam zirve saati 16:45 ile 17:45 arasında olduğu belirlenmiş ve simülasyon yapılırken yoğunluk olan zirve saatlerin trafik hacimleri alınmıştır.
Bu çalışmada, AIMSUN yazılımı kullanılarak Tebrizkapı Kavşağı’nın mevcut durum ve farklı kavşak tipleri ile tasarımları Mikrosimülasyon ile simüle edilmiştir. Üretilen modellerin doğruluğunu ölçmek için trafik hacimleri üzerinde doğrulama testi olarak kullanılan GEH (Geoffrey E. Havers) formülünden faydalanılmıştır. Mevcut durumdaki gecikme süresi 41,10 saniye ve bekleme süresi 26,85 saniye olarak bulunmuştur. Mevcut durumdaki kavşak tipi değiştirilerek Modern Dönel Kavşak ve Farklı Düzey Kavşak tasarlanarak simülasyonları yapılmıştır. Yeni yapılan tasarımların gecikme süreleri Modern Dönel kavşak için 9,21 saniye, Farklı Düzey Kavşak için 5,03 saniye, bekleme süreleri ise Modern Dönel Kavşak için 1,66 saniye ve Farklı Düzey Kavşak için 1,20 saniye olarak bulunmuştur. Simülasyonlar sonucunda gecikme süresi ve bekleme süresi faktörleri dikkate alınarak en uygun kavşak tipi Farklı Düzey Kavşak olarak bulunmasına rağmen yapım maliyetinin çok yüksek olmasından dolayı Modern Dönel Kavşak yapılması en uygun seçim olarak belirlenmiştir.

References

  • Alkheder, S. (2016) Learning from the past: traffic safety in the eyes of affected local community in Abu Dhabi City, United Arab Emirates. Transportation Letters. 1-19.
  • Alomari, A.H., Al-Deek, H., Sandt, A., Rogers, J.H. and Hussain, O. (2016) Regional Evaluation of Bus Rapid Transit with and Without Transit Signal Priority. Transportation Research Record: Journal of the Transportation Research Board. 2554, 46-59.
  • Bayata, H. F. ve Bayrak, O. Ü. (2018). Yeni Yapılması Planlanan bir Kavşağın Mikro-Simülasyon ile Değerlendirilmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11(3): 550-559.
  • GDH (General Directorate of Highways) (2006) Trafik ve ulas¸ım bilgileri. GDH, Ankara, Turkey (in Turkish).
  • Gomes, G., May, A., and Horowitz, R. (2004) Congested freeway microsimulation model using VISSIM. Transportation Research Record: Journal of the Transportation Research Board. 1876, 71-81.
  • GoogleEarth (2020). Google Earth. https://www.google.com/earth/. (7.02.2020)
  • Jeihani, M., et al., Traffic recovery time estimation under different flow regimes in traffic simulation. Journal of Traffic and Transportation Engineering (English Edition), 2015. 2(5): p. 291-300.
  • Karakikes, I., Spangler, M. and Margreiter, M. (2016) Motorway Network Simulation Using Bluetooth Data. Transport and Telecommunication Journal. 17(3), 242-251.
  • KGM (2005). Karayolu Tasarım El Kitabı, Karayolları Genel Müdürlüğü Yayınları, 297 s, Ankara.
  • KGM (2020); Modern Dönel Kavşak kullanımı. Karayolları Genel Müdürlüğü (11.03.2020) https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Trafik/TrafikModernDonelKavsak.aspx
  • Oketch, T. and M. Carrick. Calibration and validation of a micro-simulation model in network analysis. in Proceedings of the 84th TRB Annual Meeting, Washington, DC. 2005.
  • Park, B. and Schneeberger, J. (2003) Microscopic Simulation Model Calibration and validation: case study of VISSIM simulation model for a coordinated actuated Signal system. Transportation Research Record: Journal of the Transportation Research Board. 1856, 185-192.
  • Russo, C.S., The Calibration and Verification of Simulation Models for Toll Plazas. 2008, University of Central Florida Orlando, Florida.
  • Shankar, K., C. Prasad, and T. Reddy, Evaluation of Area Traffic Management Measures Using Microscopic Simulation Model. Procedia-Social and Behavioral Sciences, 2013. 104: p. 815-824.
  • Siddharth, S. and G. Ramadurai, Calibration of VISSIM for Indian Heterogeneous Traffic Conditions. Procedia-Social and Behavioral Sciences, 2013. 104: p. 380-389.
  • Siddharth, S. and Ramadurai, G. (2013) Calibration of VISSIM for Indian heterogeneous traffic conditions. Procedia-Social and Behavioral Sciences. 104, 380-389.
  • Song, G., Yu, L. and Zhang, Y. (2012) Applicability of traffic microsimulation models in vehicle emissions estimates: Case study of VISSIM. Transportation Research Record: Journal of the Transportation Research Board. 2270, 132-141.
  • Tanyel, S. and N. Yayla, Yuvarlakada kavşakların kapasiteleri üzerine bir tartışma. İMO Teknik Dergi, 2010. 21(1): p. 4935-4958.
  • Tianzi, C., Shaochen, J., and Hongxu, Y. (2013) Comparative Study of VISSIM and SIDRA on Signalized Intersection. Procedia- Social and Behavioral Sciences. 96, 2004- 2010.
  • TÜİK (2020); Yıllara göre il nüfusları. Türkiye İstatistik Kurumu (09.03.2020) http://www.tuik.gov.tr/PreIstatistikTablo.do?istab_id=1590
  • Yu, L., Yu, L., Chen, X., and Guo, J. (2006) Calibration of VISSIM for bus rapid transit systems in Beijing using GPS data. Journal of Public Transportation. 9(3), 13.
  • Zlatkovic, M., Zlatkovic, S., Sullivan, T., Bjornstad, J. and Shahandashti, S.K.F. (2019). Assessment Of Effects Of Street Connectivity On Traffic Performance And Sustainability Within Communities And Neighborhoods Through Traffic Simulation. Sustainable Cities and Society 46: 101409.

Modeling urban intersections with micro-simulation method: Erzurum province sample

Year 2020, , 444 - 451, 01.04.2020
https://doi.org/10.31590/ejosat.araconf58

Abstract

Depending upon improving technology, increase at the number of vehicles has appeared in Erzurum province as in all around the world, and this has caused increase at traffic volume in main arteries and intersections on these inner-city main arteries. Because Tebrizkapı Junction is located between Cumhuriyet Street, Karskapı Street which is the busiest center of the city, and Taş Mağazalar Street, one of the most important shopping centers, it is exposed to serious traffic intensity especially in the morning working hours and evening working hours. In accordance with the numbers of countings, peak hour for the morning in Tebrizkapı intersection is between 7.45 and 8.45 a.m., and the peak hour for the evening is between 4.45 and 5.45 p.m. The traffic volumes of peak hours were used during the simulation.
In this study, using the AIMSUN software, the current state of the Tabrizkapı Junction, and the different junction types and designs are simulated by Micro-simulation. The GEH (Geoffrey E. Havers) formula, which is used as a verification test on traffic volumes, was used to measure the accuracy of the models produced. The delay time and the stop time for the existing situation were 41.10 and 26.85 seconds, respectively. By changing the type of the existing intersection, the Roundabout and Grade Seperated Junctions were designed and simulated. The delay times for the new designs were found as 9.21 and 5.03 seconds for Roundabout and Grade Seperated Junction respectively. The stop times for the new designs were found 1.66 and 1.20 seconds for Roundabout and Grade Seperated Junctions respectively. As a result of the simulations, the most appropriate intersection type was found as Grade Seperated Junction considering the delay time and stop time factors. Due the high construction cost of the Grade Seperated Junction, the Roundabout junction has been found as the most appropriate choice.

References

  • Alkheder, S. (2016) Learning from the past: traffic safety in the eyes of affected local community in Abu Dhabi City, United Arab Emirates. Transportation Letters. 1-19.
  • Alomari, A.H., Al-Deek, H., Sandt, A., Rogers, J.H. and Hussain, O. (2016) Regional Evaluation of Bus Rapid Transit with and Without Transit Signal Priority. Transportation Research Record: Journal of the Transportation Research Board. 2554, 46-59.
  • Bayata, H. F. ve Bayrak, O. Ü. (2018). Yeni Yapılması Planlanan bir Kavşağın Mikro-Simülasyon ile Değerlendirilmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11(3): 550-559.
  • GDH (General Directorate of Highways) (2006) Trafik ve ulas¸ım bilgileri. GDH, Ankara, Turkey (in Turkish).
  • Gomes, G., May, A., and Horowitz, R. (2004) Congested freeway microsimulation model using VISSIM. Transportation Research Record: Journal of the Transportation Research Board. 1876, 71-81.
  • GoogleEarth (2020). Google Earth. https://www.google.com/earth/. (7.02.2020)
  • Jeihani, M., et al., Traffic recovery time estimation under different flow regimes in traffic simulation. Journal of Traffic and Transportation Engineering (English Edition), 2015. 2(5): p. 291-300.
  • Karakikes, I., Spangler, M. and Margreiter, M. (2016) Motorway Network Simulation Using Bluetooth Data. Transport and Telecommunication Journal. 17(3), 242-251.
  • KGM (2005). Karayolu Tasarım El Kitabı, Karayolları Genel Müdürlüğü Yayınları, 297 s, Ankara.
  • KGM (2020); Modern Dönel Kavşak kullanımı. Karayolları Genel Müdürlüğü (11.03.2020) https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Trafik/TrafikModernDonelKavsak.aspx
  • Oketch, T. and M. Carrick. Calibration and validation of a micro-simulation model in network analysis. in Proceedings of the 84th TRB Annual Meeting, Washington, DC. 2005.
  • Park, B. and Schneeberger, J. (2003) Microscopic Simulation Model Calibration and validation: case study of VISSIM simulation model for a coordinated actuated Signal system. Transportation Research Record: Journal of the Transportation Research Board. 1856, 185-192.
  • Russo, C.S., The Calibration and Verification of Simulation Models for Toll Plazas. 2008, University of Central Florida Orlando, Florida.
  • Shankar, K., C. Prasad, and T. Reddy, Evaluation of Area Traffic Management Measures Using Microscopic Simulation Model. Procedia-Social and Behavioral Sciences, 2013. 104: p. 815-824.
  • Siddharth, S. and G. Ramadurai, Calibration of VISSIM for Indian Heterogeneous Traffic Conditions. Procedia-Social and Behavioral Sciences, 2013. 104: p. 380-389.
  • Siddharth, S. and Ramadurai, G. (2013) Calibration of VISSIM for Indian heterogeneous traffic conditions. Procedia-Social and Behavioral Sciences. 104, 380-389.
  • Song, G., Yu, L. and Zhang, Y. (2012) Applicability of traffic microsimulation models in vehicle emissions estimates: Case study of VISSIM. Transportation Research Record: Journal of the Transportation Research Board. 2270, 132-141.
  • Tanyel, S. and N. Yayla, Yuvarlakada kavşakların kapasiteleri üzerine bir tartışma. İMO Teknik Dergi, 2010. 21(1): p. 4935-4958.
  • Tianzi, C., Shaochen, J., and Hongxu, Y. (2013) Comparative Study of VISSIM and SIDRA on Signalized Intersection. Procedia- Social and Behavioral Sciences. 96, 2004- 2010.
  • TÜİK (2020); Yıllara göre il nüfusları. Türkiye İstatistik Kurumu (09.03.2020) http://www.tuik.gov.tr/PreIstatistikTablo.do?istab_id=1590
  • Yu, L., Yu, L., Chen, X., and Guo, J. (2006) Calibration of VISSIM for bus rapid transit systems in Beijing using GPS data. Journal of Public Transportation. 9(3), 13.
  • Zlatkovic, M., Zlatkovic, S., Sullivan, T., Bjornstad, J. and Shahandashti, S.K.F. (2019). Assessment Of Effects Of Street Connectivity On Traffic Performance And Sustainability Within Communities And Neighborhoods Through Traffic Simulation. Sustainable Cities and Society 46: 101409.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatih İrfan Baş 0000-0002-0845-060X

Muhammed Ali Çolak 0000-0003-4990-6674

Ahmet Oğuz Demiriz 0000-0002-6680-8569

Halim Ferit Bayata 0000-0001-8274-8888

Osman Ünsal Bayrak 0000-0003-4039-1248

Ömer Faruk Keleş 0000-0001-6149-572X

Yusuf Mazlum 0000-0003-2957-2822

Mehmet Oğuzhan Gürel 0000-0001-9988-9169

Muhammed Sami Demircioğlu This is me 0000-0002-0295-9309

Publication Date April 1, 2020
Published in Issue Year 2020

Cite

APA Baş, F. İ., Çolak, M. A., Demiriz, A. O., Bayata, H. F., et al. (2020). Kentiçi Kavşakların Mikrosimülasyon Yöntemiyle Modellenmesi: Erzurum İli Örneği. Avrupa Bilim Ve Teknoloji Dergisi444-451. https://doi.org/10.31590/ejosat.araconf58