Research Article
BibTex RIS Cite

Zencefil ve Keten Tohumu Oleoresinlerinin Elde Edilmesi ve Ekstraksiyon Koşullarının Cevap Yüzey Yöntemi İle Optimizasyonu

Year 2020, , 602 - 613, 31.12.2020
https://doi.org/10.31590/ejosat.724113

Abstract

Günümüzde; hastalıkların önlenmesinde ve tedavisinde doğal yollarla alınan birtakım gıdaların etkili olduğunun bilimsel olarak ispatlanması, tüketicilerin bu gıdalara olan ilgisini ve bu gıdaların önemini arttırmıştır. Yapılan bilimsel çalışmaların sonuçları tüketicileri beslenme alışkanlıkları üzerinde düşünmeye ve düzenleme yapmaya itmiş ve yaygın olarak kullanılan sentetik katkı maddeleri hakkındaki düşüncelerini olumsuz etkileyerek doğal bitkisel kaynaklara yönlendirmiştir. Bu gelişmelerle birlikte, bitkilerden doğal antioksidanların elde edilip, geliştirilip ve çeşitlendirilmesi üzerine yapılan araştırmalar da hız kazanarak devam etmiş ve tıbbi ve aromatik bitkiler ile baharatlar, araştırmaların odak noktası haline gelmiştir. Sıvı baharat olarak bilinen oleoresinler, sahip oldukları fizyolojik aktiviteleri sayesinde, bazı tip kanserleri, kardiyovasküler hastalıkları ve yaşlanmayı önleyici etki göstermekte, bağışıklık sistemini güçlendirmekte, kolesterolü, tansiyonu ve kan şekerini düşürücü etki göstermektedir. Yapılan çalışmada ham ürüne göre üstünlükleri olan, fenolik ve yağ asitlerince konsantre edilmiş formda, hem gıda katkıları hem de fonksiyonel ürün olarak çeşitli amaçlarla kullanımları mümkün olan keten tohumu ve zencefil oleoresinleri elde edilmiş ve elde edilmesinde kullanılan solvent ekstraksiyonu koşulları optimize edilmiştir. Bu amaçla deney paremetrelerine göre üç faktör-üç seviye Box-Behnken tepki yüzey deneme deseni oluşturularak ekstraksiyon işlemi gerçekleştirilmiştir. Ekstraksiyon sıcaklığı, ekstraksiyon süresi ve örnek/çözücü oranı değişken parametre olarak belirlenmiştir. Bu değişken parametrelerin ekstraksiyon verimi, toplam fenolik madde miktarı ve radikal süpürücü güçleri üzerine etkisi incelenmiştir. Bu etkilerin değerlendirilmesinde ise; Design-Expert® yazılım programı kullanılmıştır. Zencefilden toplam fenolik miktarı, antiradikal aktivitesi ve ekstraksiyon verimi yüksek olan oleoresin elde edilmesinde; örnek çözücü oranı 1/40, sıcaklık 42,5°C ve ekstraksiyon süresi 22 dakika olarak optimize edilmiştir. Keten tohumundan elde edilen oleoresin için program cevaplarının maksimum değerde olduğu koşullar; örnek çözücü oranı 1/35, sıcaklık 41,3°C ve ekstraksiyon süresi 27 dakika olarak optimize edilmiştir.

Supporting Institution

Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeler Birimi

Project Number

MF061218L02

Thanks

Bu çalışma, Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeler Birimi tarafından MF061218L02 numarası ile desteklenmiştir.

References

  • Anwar, F., & Przybylski, R. (2012). Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). ACTA Scientiarum Polonorum Technologia Alimentaria, 11(3), 293-302.
  • Beejmohun, V., Fliniaux, O., Grand, É., Lamblin, F., Bensaddek, L., Christen, P., ... & Mesnard, F. (2007). Microwave‐assisted extraction of the main phenolic compounds in flaxseed. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 18(4), 275-282.
  • Bekdeşer, B. Yanıt Yüzey Metodolojisi Kullanılarak Dulavratotu (Arctium Lappa)'dan Antioksidanların Mikrodalga Destekli Ekstraksiyonunun Modellenmesi ve Optimizasyonu. Avrupa Bilim ve Teknoloji Dergisi, (17), 655-662.
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C., (1994). Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28, 25-30.
  • Chan, E. W. C., Lim, Y. Y., & Omar, M. (2007). Antioxidant and antibacterial activity of leaves of Etlingera species (Zingiberaceae) in Peninsular Malaysia. Food chemistry, 104(4), 1586-1593.
  • Ding, S. H., An, K. J., Zhao, C. P., Li, Y., Guo, Y. H., & Wang, Z. F. (2012). Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe). Food and bioproducts processing, 90(3), 515-524.
  • Eliasson, C., Kamal-Eldin, A., Andersson, R., & Åman, P. (2003). High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. Journal of chromatography A, 1012(2), 151-159.
  • Fliniaux, O., Corbin, C., Ramsay, A., Renouard, S., Beejmohun, V., Doussot, J., ... & Roscher, A. (2014). Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system. Molecules, 19(3), 3025-3037.
  • Ghasemzadeh, A., Jaafar, H. Z., & Rahmat, A. (2010). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 15(6), 4324-4333.
  • Guiné, R. P. F., Henrriques, F., & Barroca, M. J. (2012). Mass transfer coefficients for the drying of pumpkin (Cucurbita moschata) and dried product quality. Food and Bioprocess Technology, 5(1), 176-183.
  • Hao, M., & Beta, T. (2012). Development of Chinese steamed bread enriched in bioactive compounds from barley hull and flaxseed hull extracts. Food Chemistry, 133(4), 1320-1325.
  • Hoşgün, E. Z., & Bozan, B. (2013). Keten Tohumu Yağının Süperkritik Akışkan Ekstraksiyon Kinetiğinin Difüzyon Kontrol Metodu İle Modellenmesi. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering, 14(1).
  • Johnsson, P., Kamal-Eldin, A., Lundgren, L. N., & Åman, P. (2000). HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. Journal of agricultural and food chemistry, 48(11), 5216-5219.
  • Kajla, P., Sharma, A., & Sood, D. R. (2015). Flaxseed—a potential functional food source. Journal of food science and technology, 52(4), 1857-1871.
  • Kanakdande, D., Bhosale, R. And Sınghal, R.S. 2007. Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydrate Polymers, 67 (4): 536-541.
  • Küçüközet, A. O., & Uslu, M. K. (2018). Cooking loss, tenderness, and sensory evaluation of chicken meat roasted after wrapping with edible films. Food Science and Technology International, 24(7), 576-584.
  • Maizura, M., Aminah, A., & Wan Aida, W. M. (2011). Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. International Food Research Journal, 18(2).
  • Mercier, S., Mondor, M., Villeneuve, S., Marcos, B., & Moresoli, C. (2015). Assessment of the Oxidative Stability of Flaxseed‐Enriched Lasagna Using the R ancimat Method. Journal of food processing and preservation, 39(6), 1729-1734.
  • Milder, I. E., Arts, I. C., Venema, D. P., Lasaroms, J. J., Wähälä, K., & Hollman, P. C. (2004). Optimization of a liquid chromatography− tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. Journal of agricultural and food chemistry, 52(15), 4643-4651.
  • Montgomery, D. C. (2001). Design and analysis of experiments. John Wiley & Sons. Inc., New York, 1997, 200-1.
  • Nile, S. H., & Park, S. W. (2015). Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products, 70, 238-244.
  • Noguchi, C., & Nikki, E. (2000). Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drugs for atherosclerosis. Free Radical Biology and Medicine, 28, 1538–1546.
  • Oboh, G., Akinyemi, A. J., & Ademiluyi, A. O. (2012). Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro. Experimental and Toxicologic Pathology, 64(1-2), 31-36.
  • Ponce, A.G., Roura, S.I., Del Valle, C.E. And Moreıra, M.R. 2008. Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest biology and technology, 49 (2): 294-300.
  • Renouard, S., Hano, C., Corbin, C., Fliniaux, O., Lopez, T., Montguillon, J., ... & Lainé, E. (2010). Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food chemistry, 122(3), 679-687.
  • Sarıtaş, N. (2018). Ceviz yeşil kabuğundan ultrases yardımıyla fenolik madde ekstraksiyonu, kinetik modellenmesi ve optimizasyonu (Master's thesis, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü).
  • Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American journal of clinical nutrition, 81(1), 215S-217S.
  • Shaıkh, J., Bhosale, R. And Sınghal, R. 2006. Microencapsulation of black pepper oleoresin. Food chemistry, 94 (1): 105-110.
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Visioli, F., Caruso, D., Plasmati, E., Patelli, R., Mulinacci, N., Romani, A., Galli, G., Galli, C. 2001. Hydroxytyrosol, as a component of olive mill waste water, is dose-dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radic. Res. 34:301-305.
  • Yeh, H. Y., Chuang, C. H., Chen, H. C., Wan, C. J., Chen, T. L., & Lin, L. Y. (2014). Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT-Food Science and Technology, 55(1), 329-334.
  • Zancan, K. C., Marques, M. O., Petenate, A. J., & Meireles, M. A. A. (2002). Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: a study of the antioxidant action of the extracts. The Journal of supercritical fluids, 24(1), 57-76.
  • Zhang, F., Yang, Y., Su, P., & Guo, Z. (2009). Microwave‐assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb. Phytochemical analysis, 20(1), 33-37.

Isolation of Ginger and Flaxseed Oleoresins and Optimization of Extraction Conditions by Response Surface Methodology

Year 2020, , 602 - 613, 31.12.2020
https://doi.org/10.31590/ejosat.724113

Abstract

Today, scientific proof that certain foods taken by natural means are effective in the prevention and treatment of diseases has increased consumers ' interest in these foods and the importance of these foods. The results of scientific studies have led consumers to think about and regulate their eating habits and directed them to natural herbal sources that have negatively affected their thinking about widely used synthetic additives. With these developments, research on the acquisition, development and diversification of natural antioxidants from plants continued to increase, and medicinal and aromatic plants and spices became the focus of research. Oleoresins, known as liquid spices, have physiological activities that prevent certain types of cancers, cardiovascular diseases and aging, strengthen the immune system, cholesterol, blood pressure and blood sugar lowering effect. In the study, linseed and ginger oleoresins, which are superior to raw products, are obtained in phenolic and fatty acids concentrated form, which can be used for various purposes as both food additives and functional products, and the solvent extraction conditions used in their production were optimized. For this purpose, Three Factor-three Level Box-Behnken surface test pattern was created according to the test parameters and extraction process was performed. Extraction temperature, extraction time and sample/solvent ratio were determined as variable parameters. The effect of these variable parameters on extraction yield, total amount of phenolic and radical scavenger powers were studied. In the evaluation of these effects; Design-Expert ® software program was used. The total phenolic content, antiradical activity and extraction yield of flax seed were optimized for high oleoresin; sample solvent ratio was 1/35, temperature 41.3°C and extraction time was also 27 minutes. In ginger, the conditions in which the program responses are maximum are optimized; sample solvent ratio is 1/40 temperature 42.5°C and extraction time is 22 minutes.

Project Number

MF061218L02

References

  • Anwar, F., & Przybylski, R. (2012). Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). ACTA Scientiarum Polonorum Technologia Alimentaria, 11(3), 293-302.
  • Beejmohun, V., Fliniaux, O., Grand, É., Lamblin, F., Bensaddek, L., Christen, P., ... & Mesnard, F. (2007). Microwave‐assisted extraction of the main phenolic compounds in flaxseed. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 18(4), 275-282.
  • Bekdeşer, B. Yanıt Yüzey Metodolojisi Kullanılarak Dulavratotu (Arctium Lappa)'dan Antioksidanların Mikrodalga Destekli Ekstraksiyonunun Modellenmesi ve Optimizasyonu. Avrupa Bilim ve Teknoloji Dergisi, (17), 655-662.
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C., (1994). Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28, 25-30.
  • Chan, E. W. C., Lim, Y. Y., & Omar, M. (2007). Antioxidant and antibacterial activity of leaves of Etlingera species (Zingiberaceae) in Peninsular Malaysia. Food chemistry, 104(4), 1586-1593.
  • Ding, S. H., An, K. J., Zhao, C. P., Li, Y., Guo, Y. H., & Wang, Z. F. (2012). Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe). Food and bioproducts processing, 90(3), 515-524.
  • Eliasson, C., Kamal-Eldin, A., Andersson, R., & Åman, P. (2003). High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. Journal of chromatography A, 1012(2), 151-159.
  • Fliniaux, O., Corbin, C., Ramsay, A., Renouard, S., Beejmohun, V., Doussot, J., ... & Roscher, A. (2014). Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system. Molecules, 19(3), 3025-3037.
  • Ghasemzadeh, A., Jaafar, H. Z., & Rahmat, A. (2010). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 15(6), 4324-4333.
  • Guiné, R. P. F., Henrriques, F., & Barroca, M. J. (2012). Mass transfer coefficients for the drying of pumpkin (Cucurbita moschata) and dried product quality. Food and Bioprocess Technology, 5(1), 176-183.
  • Hao, M., & Beta, T. (2012). Development of Chinese steamed bread enriched in bioactive compounds from barley hull and flaxseed hull extracts. Food Chemistry, 133(4), 1320-1325.
  • Hoşgün, E. Z., & Bozan, B. (2013). Keten Tohumu Yağının Süperkritik Akışkan Ekstraksiyon Kinetiğinin Difüzyon Kontrol Metodu İle Modellenmesi. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering, 14(1).
  • Johnsson, P., Kamal-Eldin, A., Lundgren, L. N., & Åman, P. (2000). HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. Journal of agricultural and food chemistry, 48(11), 5216-5219.
  • Kajla, P., Sharma, A., & Sood, D. R. (2015). Flaxseed—a potential functional food source. Journal of food science and technology, 52(4), 1857-1871.
  • Kanakdande, D., Bhosale, R. And Sınghal, R.S. 2007. Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydrate Polymers, 67 (4): 536-541.
  • Küçüközet, A. O., & Uslu, M. K. (2018). Cooking loss, tenderness, and sensory evaluation of chicken meat roasted after wrapping with edible films. Food Science and Technology International, 24(7), 576-584.
  • Maizura, M., Aminah, A., & Wan Aida, W. M. (2011). Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. International Food Research Journal, 18(2).
  • Mercier, S., Mondor, M., Villeneuve, S., Marcos, B., & Moresoli, C. (2015). Assessment of the Oxidative Stability of Flaxseed‐Enriched Lasagna Using the R ancimat Method. Journal of food processing and preservation, 39(6), 1729-1734.
  • Milder, I. E., Arts, I. C., Venema, D. P., Lasaroms, J. J., Wähälä, K., & Hollman, P. C. (2004). Optimization of a liquid chromatography− tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. Journal of agricultural and food chemistry, 52(15), 4643-4651.
  • Montgomery, D. C. (2001). Design and analysis of experiments. John Wiley & Sons. Inc., New York, 1997, 200-1.
  • Nile, S. H., & Park, S. W. (2015). Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products, 70, 238-244.
  • Noguchi, C., & Nikki, E. (2000). Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drugs for atherosclerosis. Free Radical Biology and Medicine, 28, 1538–1546.
  • Oboh, G., Akinyemi, A. J., & Ademiluyi, A. O. (2012). Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro. Experimental and Toxicologic Pathology, 64(1-2), 31-36.
  • Ponce, A.G., Roura, S.I., Del Valle, C.E. And Moreıra, M.R. 2008. Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest biology and technology, 49 (2): 294-300.
  • Renouard, S., Hano, C., Corbin, C., Fliniaux, O., Lopez, T., Montguillon, J., ... & Lainé, E. (2010). Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food chemistry, 122(3), 679-687.
  • Sarıtaş, N. (2018). Ceviz yeşil kabuğundan ultrases yardımıyla fenolik madde ekstraksiyonu, kinetik modellenmesi ve optimizasyonu (Master's thesis, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü).
  • Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American journal of clinical nutrition, 81(1), 215S-217S.
  • Shaıkh, J., Bhosale, R. And Sınghal, R. 2006. Microencapsulation of black pepper oleoresin. Food chemistry, 94 (1): 105-110.
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Visioli, F., Caruso, D., Plasmati, E., Patelli, R., Mulinacci, N., Romani, A., Galli, G., Galli, C. 2001. Hydroxytyrosol, as a component of olive mill waste water, is dose-dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radic. Res. 34:301-305.
  • Yeh, H. Y., Chuang, C. H., Chen, H. C., Wan, C. J., Chen, T. L., & Lin, L. Y. (2014). Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT-Food Science and Technology, 55(1), 329-334.
  • Zancan, K. C., Marques, M. O., Petenate, A. J., & Meireles, M. A. A. (2002). Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: a study of the antioxidant action of the extracts. The Journal of supercritical fluids, 24(1), 57-76.
  • Zhang, F., Yang, Y., Su, P., & Guo, Z. (2009). Microwave‐assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb. Phytochemical analysis, 20(1), 33-37.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Büşra Şahin This is me 0000-0001-5019-6898

Seda Özgen 0000-0001-9952-5015

Project Number MF061218L02
Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Şahin, B., & Özgen, S. (2020). Zencefil ve Keten Tohumu Oleoresinlerinin Elde Edilmesi ve Ekstraksiyon Koşullarının Cevap Yüzey Yöntemi İle Optimizasyonu. Avrupa Bilim Ve Teknoloji Dergisi(20), 602-613. https://doi.org/10.31590/ejosat.724113