Research Article
BibTex RIS Cite

Taşıt Freni Aşınma Parçacık Emisyonlarının Mikroyapısı ve Kimyasal Analizi

Year 2020, , 633 - 642, 31.08.2020
https://doi.org/10.31590/ejosat.744098

Abstract

Taşıtlardan kaynaklanan emisyonlar özellikle endüstriyel alanlarda ve kalabalık nüfuslu yerlerde önemli çevre problemlerine sebep olmaktadır. Egzoz emisyonları yasal düzenlemelerle azaltılmaya çalışılsa bile egzoz dışı emisyonlar da hissedilir derecede artış olduğu açıktır. Fren aşıntı emisyonları egzoz dışı emisyonların en önemli kaynaklarından birisidir. Fren aşıntı partiküllerine genellikle dökme demir disk ve ona karşı sürtünme eşliği eden kompozit bir balata ikilisi kaynaklık eder. Bu malzemelerin kimyasal kompozisyonu aşıntı partiküllerinin içeriğine etki eder. Bu çalışma, Orijinal Ekipman Üreticileri (OEM) tarafından piyasaya ticari olarak sunulan fren disk ve balatalarına ait fren aşınma emisyon maddesinin kimyasal ve mikroyapısal karakterizasyonu araştırmak amacıyla yapılmıştır. Aşıntı partiküllerinin mikroyapı karekterizasyonu, alan taramalı elektron mikroskobu (SEM), elementel analizi enerji dağıtıcı spektrometre (EDS), kristal yapıları X-ray diffraction (XRD) ve moleküler bağ yapıları fourier dönüşümlü kızılötesi spektroskopisi (FTIR) cihazı yardımıyla analiz edildi. Analizler sonunda C, N, O, F, Si, Ca, Fe ve Cu gibi elementler, sülfatlar, fosfatlar, oksitler ve farklı mineral yapıların aşınma partikülleri kimyasında bulunduğu tespit edilmiştir. Bilhassa oksitli yapıların ve ağır metallerin varlığı insan sağlığı ve çevre açısından ciddi tehditler içermektedir. Bu çalışma politika yapıcılar ve araştırmacılar için önemli bilgiler sağlayacaktır.

References

  • Amato, F. (Ed.). (2018). Non-exhaust emissions: an urban air quality problem for public health; impact and mitigation measures. Academic Press.
  • Khodakarami, J., & Ghobadi, P. (2016). Urban pollution and solar radiation impacts. Renewable and Sustainable Energy Reviews, 57, 965-976.
  • Pope Iii, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
  • Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., ... & Olin, S. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and fiber toxicology, 2(1), 8.
  • Radhakrishnan, S., Devarajan, Y., Mahalingam, A., & Nagappan, B. (2017). Emissions analysis on a diesel engine fueled with palm oil biodiesel and pentanol blends. Journal of Oil Palm Research, 29(3), 380-386.
  • de Miranda, R. M., de Fatima Andrade, M., Fornaro, A., Astolfo, R., de Andre, P. A., & Saldiva, P. (2012). Urban air pollution: a representative survey of PM 2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere & Health, 5(1), 63-77.
  • Denier van der Gon, H. A., Gerlofs-Nijland, M. E., Gehrig, R., Gustafsson, M., Janssen, N., Harrison, R. M., ... & Krijgsheld, K. (2013). The policy relevance of wear emissions from road transport, now and in the future—an international workshop report and consensus statement. Journal of the Air & Waste Management Association, 63(2), 136-149.
  • zum Hagen, F. H. F., Mathissen, M., Grabiec, T., Hennicke, T., Rettig, M., Grochowicz, J., ... & Benter, T. (2019). On-road vehicle measurements of brake wear particle emissions. Atmospheric Environment, 217, 116943.
  • Lewis, A., Moller, S. J., & Carslaw, D. (2019). Non-Exhaust Emissions from Road Traffic.
  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. Science of the total environment, 400(1-3), 270-282.
  • Harrison, R. M., Jones, A. M., Gietl, J., Yin, J., & Green, D. C. (2012). Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environmental science & technology, 46(12), 6523-6529.
  • Perricone, G., Alemani, M., Metinöz, I., Matějka, V., Wahlström, J., & Olofsson, U. (2017). Towards the ranking of airborne particle emissions from car brakes–a system approach. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(6), 781-797.
  • Yamabe, J., Takagi, M., Matsui, T., Kimura, T., & Sasaki, M. (2003). Development of disc brake rotors for heavy-and medium-duty trucks with high thermal fatigue strength. SAE transactions, 124-131.
  • Güney, B., & Mutlu, I. (2019). TRIBOLOGICAL PROPERTIES OF BRAKE DISCS COATED WITH Cr2O3–40% TiO2 BY PLASMA SPRAYING. Surface Review and Letters, 26(10), 1950075.
  • Guney, B., Mutlu, I., & Gayretli, A. (2016). Investigation of braking performance of NiCrBSi coated brake discs by flame spraying. Journal of the Balkan Tribological Association, 22(1 A), 887-903.
  • Güney, B., & Mutlu, İ. (2017). Dry friction behavior of NiCrBSi-% 35W2C coated brake disks. Materials Testing, 59(5), 497-505.
  • Mutlu, İ., Güney, B., & Erkurt, İ. Investigation of the effect of Cr2O3-2% TiO2 coating on braking performance. International Journal of Automotive Engineering and Technologies, 9(1), 29-41.
  • Öz, A., Gürbüz, H., Yakut, A. K., & Sağiroğlu, S. (2017). Braking performance and noise in excessively worn brake discs coated with HVOF thermal spray process. Journal of Mechanical Science and Technology, 31(2), 535-543.
  • Öz, A., Samur, R., Mindivan, H., Demir, A., Sagiroglu, S., & Yakut, A. K. (2013). Effect of heat treatment on the wear and corrosion behaviors of a gray cast iron coated with a COLMONOY 88 alloy deposited by high velocity oxygen fuel (HVOF) thermal spray. Metalurgija, 52(3), 368-370.
  • Filip, P., Kovarik, L., & Wright, M. A. (1997). Automotive brake lining characterization (No. 973024). SAE Technical Paper.
  • Österle, W., Prietzel, C., Kloß, H., & Dmitriev, A. I. (2010). On the role of copper in brake friction materials. Tribology International, 43(12), 2317-2326.
  • Chan, D. S. E. A., & Stachowiak, G. W. (2004). Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(9), 953-966.
  • Mutlu, I., Eldogan, O., & Findik, F. (2005). Production of ceramic additive automotive brake lining and investigation of its braking characterisation. Industrial Lubrication and Tribology.
  • Kukutschová, J., Moravec, P., Tomášek, V., Matějka, V., Smolík, J., Schwarz, J., ... & Filip, P. (2011). On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environmental Pollution, 159(4), 998-1006.
  • Plachá, D., Vaculík, M., Mikeska, M., Dutko, O., Peikertová, P., Kukutschová, J., ... & Filip, P. (2017). Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear, 376, 705-716.
  • Liew, K. W., & Nirmal, U. (2013). Frictional performance evaluation of newly designed brake pad materials. Materials & Design, 48, 25-33.
  • Gehrig, R., Hill, M., Buchmann, B., Imhof, D., Weingartner, E., & Baltensperger, U. (2004). Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes. International Journal of Environment and Pollution, 22(3), 312-325.
  • Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmospheric environment, 77, 78-97.
  • Kukutschová, J., Roubíček, V., Malachová, K., Pavlíčková, Z., Holuša, R., Kubačková, J., ... & Filip, P. (2009). Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear, 267(5-8), 807-817.
  • zum Hagen, F. H. F., Mathissen, M., Grabiec, T., Hennicke, T., Rettig, M., Grochowicz, J., ... & Benter, T. (2019). Study of brake wear particle emissions: impact of braking and cruising conditions. Environmental science & technology, 53(9), 5143-5150.
  • Wahid, S. M. (2018). Automotive brake wear: a review. Environmental Science and Pollution Research, 25(1), 174-180.
  • Filip, P., Weiss, Z., & Rafaja, D. (2002). On friction layer formation in polymer matrix composite materials for brake applications. Wear, 252(3-4), 189-198.
  • Peter, F. (2013). Friction brakes for automotive and aircraft. In Encyclopedia of tribology (pp. 1296-1304). Springer US.
  • Joo, B. S., Jara, D. C., Seo, H. J., & Jang, H. (2020). Influences of the average molecular weight of phenolic resin and potassium titanate morphology on particulate emissions from brake. Wear, 203243.
  • Lyu, Y., Leonardi, M., Wahlström, J., Gialanella, S., & Olofsson, U. (2020). Friction, wear and airborne particle emission from Cu-free brake materials. Tribology International, 141, 105959.
  • Nosko, O., Alemani, M., & Olofsson, U. (2017). Characterisation of airborne particles emitted from car brake materials. In Proc. 6th World Tribology Congress, September (pp. 17-22).
  • Mathissen, M., Grigoratos, T., Lahde, T., & Vogt, R. (2019). Brake wear particle emissions of a passenger car measured on a chassis dynamometer. Atmosphere, 10(9), 556.
  • Perricone, G., Alemani, M., Wahlström, J., & Olofsson, U. (2020). A proposed driving cycle for brake emissions investigation for test stand. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(1), 122-135.
  • Sanders, P. G., Xu, N., Dalka, T. M., & Maricq, M. M. (2003). Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environmental science & technology, 37(18), 4060-4069.
  • Güney, B., & Mutlu, I. (2019). Wear and corrosion resistance of Cr2O3%-40% TiO2 coating on gray cast-iron by plasma spray technique. Materials Research Express, 6(9), 096577.
  • Garg, B. D., Cadle, S. H., Mulawa, P. A., Groblicki, P. J., Laroo, C., & Parr, G. A. (2000). Brake wear particulate matter emissions. Environmental Science & Technology, 34(21), 4463-4469.
  • Geiser, M., & Kreyling, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and fibre toxicology, 7(1), 2.
  • Hulskotte, J. H. J., Roskam, G. D., & Van Der Gon, H. D. (2014). Elemental composition of current automotive braking materials and derived air emission factors. Atmospheric environment, 99, 436-445.
  • Afiqah, O., Fauziana, I., Rasid, O., & Wong, S. V. (2015). Elemental composition study of commercial brake pads for a passenger vehicle: A case study. Recent Advances in Mechanics and Mechanical Engineering.
  • Kennedy, P., & Gadd, J. (2003). Preliminary examination of trace elements in tyres, brake pads, and road bitumen in New Zealand. Prepared for Ministry of Transport, New Zealand, Infrastructure Auckland.
  • Verma, P. C., Menapace, L., Bonfanti, A., Ciudin, R., Gialanella, S., & Straffelini, G. (2015). Braking pad-disc system: wear mechanisms and formation of wear fragments. Wear, 322, 251-258.
  • Straffelini, G., Pellizzari, M., & Maines, L. (2011). Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron. Wear, 270(9-10), 714-719.
  • Straffelini, G., & Molinari, A. (2011). Mild sliding wear of Fe–0.2% C, Ti–6% Al–4% V and Al-7072: a comparative study. Tribology letters, 41(1), 227-238.
  • Aku, S. Y., Yawas, D. S., Madakson, P. B., & Amaren, S. G. (2012). Characterization of periwinkle shell as asbestos-free brake pad materials. The Pacific Journal of Science and Technology, 13(2), 57-63.
  • Boroń, P., Rutkowska, M., Gil, B., Marszałek, B., Chmielarz, L., & Dzwigaj, S. (2019). Experimental Evidence of the Mechanism of Selective Catalytic Reduction of NO with NH3 over Fe‐Containing BEA Zeolites. ChemSusChem, 12(3), 692-705.

Microstructure and Chemical Analysis of Vehicle Brake Wear Particle Emissions

Year 2020, , 633 - 642, 31.08.2020
https://doi.org/10.31590/ejosat.744098

Abstract

Vehicle emissions cause serious environmental problems, especially in industrial areas and populated areas. Although exhaust emissions are tried to be reduced by legal regulations, it is clear that non-exhaust emissions also increase significantly. Brake wear emissions are one of the most important sources of non-exhaust emissions. Brake wear particles are usually result from a cast-iron disc and a composite pad pair that is accompanied by friction. The chemical composition of these materials affects the content of the wear particles. The purpose of this study is to investigate the chemical and microstructural characterization of brake wear emission material of brake discs and pads commercially available to the market by Original Equipment Manufacturers (OEMs). Microstructure characterization of the wear particles was analyzed with field scanning electron microscopy (SEM); elemental analysis was conducted with energy dispersing spectrometer (EDS); crystal structures were analyzed with X-ray diffraction (XRD), and molecular bond structures were analyzed with the aid of fourier-transform infrared spectroscopy (FTIR). As a result of the analysis, it was found out that elements such as C, N, O, F, Si, Ca, Fe and Cu; sulfates, phosphates, oxides, and different mineral structures exist in the chemistry of wear particles. Especially, the presence of oxidized structures and heavy metals, pose a serious threat to human health and the environment. This study will provide important information for policymakers and researchers.

References

  • Amato, F. (Ed.). (2018). Non-exhaust emissions: an urban air quality problem for public health; impact and mitigation measures. Academic Press.
  • Khodakarami, J., & Ghobadi, P. (2016). Urban pollution and solar radiation impacts. Renewable and Sustainable Energy Reviews, 57, 965-976.
  • Pope Iii, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
  • Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., ... & Olin, S. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and fiber toxicology, 2(1), 8.
  • Radhakrishnan, S., Devarajan, Y., Mahalingam, A., & Nagappan, B. (2017). Emissions analysis on a diesel engine fueled with palm oil biodiesel and pentanol blends. Journal of Oil Palm Research, 29(3), 380-386.
  • de Miranda, R. M., de Fatima Andrade, M., Fornaro, A., Astolfo, R., de Andre, P. A., & Saldiva, P. (2012). Urban air pollution: a representative survey of PM 2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere & Health, 5(1), 63-77.
  • Denier van der Gon, H. A., Gerlofs-Nijland, M. E., Gehrig, R., Gustafsson, M., Janssen, N., Harrison, R. M., ... & Krijgsheld, K. (2013). The policy relevance of wear emissions from road transport, now and in the future—an international workshop report and consensus statement. Journal of the Air & Waste Management Association, 63(2), 136-149.
  • zum Hagen, F. H. F., Mathissen, M., Grabiec, T., Hennicke, T., Rettig, M., Grochowicz, J., ... & Benter, T. (2019). On-road vehicle measurements of brake wear particle emissions. Atmospheric Environment, 217, 116943.
  • Lewis, A., Moller, S. J., & Carslaw, D. (2019). Non-Exhaust Emissions from Road Traffic.
  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. Science of the total environment, 400(1-3), 270-282.
  • Harrison, R. M., Jones, A. M., Gietl, J., Yin, J., & Green, D. C. (2012). Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environmental science & technology, 46(12), 6523-6529.
  • Perricone, G., Alemani, M., Metinöz, I., Matějka, V., Wahlström, J., & Olofsson, U. (2017). Towards the ranking of airborne particle emissions from car brakes–a system approach. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(6), 781-797.
  • Yamabe, J., Takagi, M., Matsui, T., Kimura, T., & Sasaki, M. (2003). Development of disc brake rotors for heavy-and medium-duty trucks with high thermal fatigue strength. SAE transactions, 124-131.
  • Güney, B., & Mutlu, I. (2019). TRIBOLOGICAL PROPERTIES OF BRAKE DISCS COATED WITH Cr2O3–40% TiO2 BY PLASMA SPRAYING. Surface Review and Letters, 26(10), 1950075.
  • Guney, B., Mutlu, I., & Gayretli, A. (2016). Investigation of braking performance of NiCrBSi coated brake discs by flame spraying. Journal of the Balkan Tribological Association, 22(1 A), 887-903.
  • Güney, B., & Mutlu, İ. (2017). Dry friction behavior of NiCrBSi-% 35W2C coated brake disks. Materials Testing, 59(5), 497-505.
  • Mutlu, İ., Güney, B., & Erkurt, İ. Investigation of the effect of Cr2O3-2% TiO2 coating on braking performance. International Journal of Automotive Engineering and Technologies, 9(1), 29-41.
  • Öz, A., Gürbüz, H., Yakut, A. K., & Sağiroğlu, S. (2017). Braking performance and noise in excessively worn brake discs coated with HVOF thermal spray process. Journal of Mechanical Science and Technology, 31(2), 535-543.
  • Öz, A., Samur, R., Mindivan, H., Demir, A., Sagiroglu, S., & Yakut, A. K. (2013). Effect of heat treatment on the wear and corrosion behaviors of a gray cast iron coated with a COLMONOY 88 alloy deposited by high velocity oxygen fuel (HVOF) thermal spray. Metalurgija, 52(3), 368-370.
  • Filip, P., Kovarik, L., & Wright, M. A. (1997). Automotive brake lining characterization (No. 973024). SAE Technical Paper.
  • Österle, W., Prietzel, C., Kloß, H., & Dmitriev, A. I. (2010). On the role of copper in brake friction materials. Tribology International, 43(12), 2317-2326.
  • Chan, D. S. E. A., & Stachowiak, G. W. (2004). Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(9), 953-966.
  • Mutlu, I., Eldogan, O., & Findik, F. (2005). Production of ceramic additive automotive brake lining and investigation of its braking characterisation. Industrial Lubrication and Tribology.
  • Kukutschová, J., Moravec, P., Tomášek, V., Matějka, V., Smolík, J., Schwarz, J., ... & Filip, P. (2011). On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environmental Pollution, 159(4), 998-1006.
  • Plachá, D., Vaculík, M., Mikeska, M., Dutko, O., Peikertová, P., Kukutschová, J., ... & Filip, P. (2017). Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear, 376, 705-716.
  • Liew, K. W., & Nirmal, U. (2013). Frictional performance evaluation of newly designed brake pad materials. Materials & Design, 48, 25-33.
  • Gehrig, R., Hill, M., Buchmann, B., Imhof, D., Weingartner, E., & Baltensperger, U. (2004). Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes. International Journal of Environment and Pollution, 22(3), 312-325.
  • Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmospheric environment, 77, 78-97.
  • Kukutschová, J., Roubíček, V., Malachová, K., Pavlíčková, Z., Holuša, R., Kubačková, J., ... & Filip, P. (2009). Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear, 267(5-8), 807-817.
  • zum Hagen, F. H. F., Mathissen, M., Grabiec, T., Hennicke, T., Rettig, M., Grochowicz, J., ... & Benter, T. (2019). Study of brake wear particle emissions: impact of braking and cruising conditions. Environmental science & technology, 53(9), 5143-5150.
  • Wahid, S. M. (2018). Automotive brake wear: a review. Environmental Science and Pollution Research, 25(1), 174-180.
  • Filip, P., Weiss, Z., & Rafaja, D. (2002). On friction layer formation in polymer matrix composite materials for brake applications. Wear, 252(3-4), 189-198.
  • Peter, F. (2013). Friction brakes for automotive and aircraft. In Encyclopedia of tribology (pp. 1296-1304). Springer US.
  • Joo, B. S., Jara, D. C., Seo, H. J., & Jang, H. (2020). Influences of the average molecular weight of phenolic resin and potassium titanate morphology on particulate emissions from brake. Wear, 203243.
  • Lyu, Y., Leonardi, M., Wahlström, J., Gialanella, S., & Olofsson, U. (2020). Friction, wear and airborne particle emission from Cu-free brake materials. Tribology International, 141, 105959.
  • Nosko, O., Alemani, M., & Olofsson, U. (2017). Characterisation of airborne particles emitted from car brake materials. In Proc. 6th World Tribology Congress, September (pp. 17-22).
  • Mathissen, M., Grigoratos, T., Lahde, T., & Vogt, R. (2019). Brake wear particle emissions of a passenger car measured on a chassis dynamometer. Atmosphere, 10(9), 556.
  • Perricone, G., Alemani, M., Wahlström, J., & Olofsson, U. (2020). A proposed driving cycle for brake emissions investigation for test stand. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(1), 122-135.
  • Sanders, P. G., Xu, N., Dalka, T. M., & Maricq, M. M. (2003). Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environmental science & technology, 37(18), 4060-4069.
  • Güney, B., & Mutlu, I. (2019). Wear and corrosion resistance of Cr2O3%-40% TiO2 coating on gray cast-iron by plasma spray technique. Materials Research Express, 6(9), 096577.
  • Garg, B. D., Cadle, S. H., Mulawa, P. A., Groblicki, P. J., Laroo, C., & Parr, G. A. (2000). Brake wear particulate matter emissions. Environmental Science & Technology, 34(21), 4463-4469.
  • Geiser, M., & Kreyling, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and fibre toxicology, 7(1), 2.
  • Hulskotte, J. H. J., Roskam, G. D., & Van Der Gon, H. D. (2014). Elemental composition of current automotive braking materials and derived air emission factors. Atmospheric environment, 99, 436-445.
  • Afiqah, O., Fauziana, I., Rasid, O., & Wong, S. V. (2015). Elemental composition study of commercial brake pads for a passenger vehicle: A case study. Recent Advances in Mechanics and Mechanical Engineering.
  • Kennedy, P., & Gadd, J. (2003). Preliminary examination of trace elements in tyres, brake pads, and road bitumen in New Zealand. Prepared for Ministry of Transport, New Zealand, Infrastructure Auckland.
  • Verma, P. C., Menapace, L., Bonfanti, A., Ciudin, R., Gialanella, S., & Straffelini, G. (2015). Braking pad-disc system: wear mechanisms and formation of wear fragments. Wear, 322, 251-258.
  • Straffelini, G., Pellizzari, M., & Maines, L. (2011). Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron. Wear, 270(9-10), 714-719.
  • Straffelini, G., & Molinari, A. (2011). Mild sliding wear of Fe–0.2% C, Ti–6% Al–4% V and Al-7072: a comparative study. Tribology letters, 41(1), 227-238.
  • Aku, S. Y., Yawas, D. S., Madakson, P. B., & Amaren, S. G. (2012). Characterization of periwinkle shell as asbestos-free brake pad materials. The Pacific Journal of Science and Technology, 13(2), 57-63.
  • Boroń, P., Rutkowska, M., Gil, B., Marszałek, B., Chmielarz, L., & Dzwigaj, S. (2019). Experimental Evidence of the Mechanism of Selective Catalytic Reduction of NO with NH3 over Fe‐Containing BEA Zeolites. ChemSusChem, 12(3), 692-705.
There are 50 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bekir Güney 0000-0001-9764-9313

Ali Öz 0000-0002-0814-4020

Publication Date August 31, 2020
Published in Issue Year 2020

Cite

APA Güney, B., & Öz, A. (2020). Microstructure and Chemical Analysis of Vehicle Brake Wear Particle Emissions. Avrupa Bilim Ve Teknoloji Dergisi(19), 633-642. https://doi.org/10.31590/ejosat.744098