Research Article
BibTex RIS Cite

Influence of Welding Current Change on Coatings Containing Carbide and Boro-carbide

Year 2020, , 827 - 834, 31.12.2020
https://doi.org/10.31590/ejosat.747441

Abstract

In this study, the effect of welding current change on coatings obtained using submerged arc welding technique was investigated. In this context, welding tests were carried out using 400, 450, 500 and 550 A welding currents. In welding tests, SAE 1020 steel, ceramic-based welding powders containing ferrochromium and ferroboron powders and S1 welding wire (electrode) were used. As a result of welding tests, characterization was made in parameters such as microstructure, chemical composition, hardness and wear. As a result of the characterization processes, it was determined that with the increasing of welding current, the phase density such as carbide and boro-carbide in the coating microstructures increased and the amount of chromium, carbon and boron transition from powders to the coatings increased. At current values other than 500 A, it was determined that the homogeneity of the weld seams decreased. Similarly; it was determined that with the increasing of welding current from 400 A to 500 A, hardness values increased and wear losses decreased. However, at 550 A current value, due to the coarsing of the grains in the coating microstructure, a decrease in hardness and wear resistance of coating was observed. The highest hardness value was obtained by the coating obtained by using welding current at 500 A with 61 HRC, while the lowest hardness value was obtained by the coating obtained by using welding current at 400 A with 44 HRC.

References

  • Oates R., Saitta M.A. (2000), A.M., Welding Handbook, Volume 4 -Materials and Applications, Miami, FL, 33126, American Welding Society.
  • Civjan S.A., Guihan T., Peterman K. (2020), Testing of oxyacetylene weld strength, Journal of Constructional Steel Research, 168, 105921.
  • Shrivas S.P., Vaidya S.Y., Khandelwal A.S., Vishvakarma A.K. (2020), Investigation of TIG welding parameters to improve strength, Materials Today: Proceedings, 2020, ISSN 2214-7853.
  • Köse C.& Topal C. (2020). Plazma Ark Kaynağıyla Birleştirilen AISI 410S Ferritik Paslanmaz Çeliğin Mikroyapı ve Mekanik Özelliklerine Isıl İşlemin Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (19), 201-212.
  • Kurtulmuş M. (2018). Effects of Primary Welding Parameters on FCAW Steel Weld Form, Avrupa Bilim ve Teknoloji Dergisi, (12), 1-5.
  • Aydın K., Karaağaç İ. (2019). Lazer Kaynaklı HSLA Sac Malzemelerde Geri Esnemenin Deneysel Araştırılması, Avrupa Bilim ve Teknoloji Dergisi, (17), 29-37.
  • Le V.T., Mai D.S. (2020), Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing, Materials Letters, (271), 127791.,
  • Singh A., Singh R.P. (2020), A review of effect of welding parameters on the mechanical properties of weld in submerged arc welding process, Materials Today: Proceedings, ISSN 2214-7853.
  • Singh R.P., Singh A., Singh A.(2020), Optimization of hardness of weld in submerged arc welding, Materials Today: Proceedings, ISSN 2214-7853.
  • Sharma L., Kumar J., Chhibber R. (2020), Experimental investigation on surface behaviour of submerged arc welding fluxes using basic flux system, Ceramics International, Volume (46), 6, 8111-8121.
  • Sailender M., Suresh R., Chandramohan Reddy G., Venkatesh S. (2020), Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints, Measurement, (150), 107084, ISSN 0263-2241,
  • Suman S., Biswas P., Patel S.K., Singh V.P., Kumar A., Kuriachen B.(2020), Measurement of residual stresses in submerged arc welded P91 steel using surface deformation, Materials Today: Proceedings, (21), 3, 1707-1712.
  • Srikarun B., Oo H.Z., Petchsang S., Muangjunburee P. (2019), The effects of dilution and choice of added powder on hardfacing deposited by submerged arc welding, Wear, (424–425), 246-254.
  • Liu X., Xu M., Shi Q., Kang J., Procario J., Hou W., Manohar M. (2019), Analysis of niobium-rich phases in the submerged arc welds of high strength low alloy steel, Materialia, (7), 100340, ISSN 2589-1529.
  • Zahiri R., Sundaramoorthy R., Lysz P., Subramanian C. (2014), Hardfacing using ferro-alloy powder mixtures by submerged arc welding, Surface and Coatings Technology, (260), 220-229.
  • Lin H., Ying L., Jun L., Binghong L. (2014), Microstructure and mechanical properties for TIG welding joint of high boron Fe-Ti-B alloy, Rare Metal Materials and Engineering, (43), 283-286.
  • Yüksel N., Sahin S. (2014), Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys, Materials & Design, (58), pp. 491-498.
  • Kirchgaßner Badisch M.E., Franek F. (2008), Behaviour of iron-based hardfacing alloys under abrasion and impact, Wear, (265), 772-779.
  • Berns H., Fischer A. (1987), Microstructure of Fe-Cr -C-B alloys addition of Nb, Ti and B, Metallography, (20), 401-429.

Kaynak Akımı Değişiminin Karbür ve Boro-karbür içeren Kaplamalara Etkisi

Year 2020, , 827 - 834, 31.12.2020
https://doi.org/10.31590/ejosat.747441

Abstract

Bu çalışmada, toz altı kaynak tekniği kullanılarak elde edilen sert dolgu kaplamalara, kaynak akımının etkisi araştırılmıştır. Bu kapsamda, 400, 450, 500 ve 550 A kaynak akımları kullanılarak kaynak testleri gerçekleştirilmiştir. Kaynak testlerinde, SAE 1020 çeliği, ferrokrom ve ferrobor tozlarını içeren seramik esaslı kaynak tozları ve S1 kaynak telinden (elektrot) yararlanılmıştır. Kaynak testleri neticesinde mikroyapı, kimyasal kompozisyon, sertlik ve aşınma gibi parametrelerde karakterizasyon işlemleri yapılmıştır. Karakterizasyon işlemleri neticesinde, genel olarak kaynak akımının artmasıyla kaplama mikroyapılarında yer alan karbür ve boro-karbür gibi faz yoğunluğunun arttığı ve kaplamalara gecen krom, karbon ve bor miktarının arttığı tespit edilmiştir. 500 A dışındaki akım değerlerinde, elde edilen kaynak dikişinin homojenliğinin azaldığı tespit edilmiştir. Benzer şekilde; 400 A’den 500 A’e kaynak akımının artması ile sertlik değerlerinin arttığı ve aşınma kayıplarının azaldığı tespit edilmiştir. Ancak; 550 A akım değerlerinde, kaplama mikroyapısında yer alan tanelerin kabalaşması nedeniyle kısmi olarak sertlik ve aşınma direncinde düşüş tespit edilmiştir. En yüksek sertlik değeri 61 HRC ile 500 A’de gerçekleştirilen kaynak akımı ile elde edilen kaplamada elde edilirken, en düşük sertlik değeri ise, 44 HRC ile 400 A’de gerçekleştirilen kaynak akımı ile elde edilen kaplamada elde edilmiştir.

References

  • Oates R., Saitta M.A. (2000), A.M., Welding Handbook, Volume 4 -Materials and Applications, Miami, FL, 33126, American Welding Society.
  • Civjan S.A., Guihan T., Peterman K. (2020), Testing of oxyacetylene weld strength, Journal of Constructional Steel Research, 168, 105921.
  • Shrivas S.P., Vaidya S.Y., Khandelwal A.S., Vishvakarma A.K. (2020), Investigation of TIG welding parameters to improve strength, Materials Today: Proceedings, 2020, ISSN 2214-7853.
  • Köse C.& Topal C. (2020). Plazma Ark Kaynağıyla Birleştirilen AISI 410S Ferritik Paslanmaz Çeliğin Mikroyapı ve Mekanik Özelliklerine Isıl İşlemin Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (19), 201-212.
  • Kurtulmuş M. (2018). Effects of Primary Welding Parameters on FCAW Steel Weld Form, Avrupa Bilim ve Teknoloji Dergisi, (12), 1-5.
  • Aydın K., Karaağaç İ. (2019). Lazer Kaynaklı HSLA Sac Malzemelerde Geri Esnemenin Deneysel Araştırılması, Avrupa Bilim ve Teknoloji Dergisi, (17), 29-37.
  • Le V.T., Mai D.S. (2020), Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing, Materials Letters, (271), 127791.,
  • Singh A., Singh R.P. (2020), A review of effect of welding parameters on the mechanical properties of weld in submerged arc welding process, Materials Today: Proceedings, ISSN 2214-7853.
  • Singh R.P., Singh A., Singh A.(2020), Optimization of hardness of weld in submerged arc welding, Materials Today: Proceedings, ISSN 2214-7853.
  • Sharma L., Kumar J., Chhibber R. (2020), Experimental investigation on surface behaviour of submerged arc welding fluxes using basic flux system, Ceramics International, Volume (46), 6, 8111-8121.
  • Sailender M., Suresh R., Chandramohan Reddy G., Venkatesh S. (2020), Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints, Measurement, (150), 107084, ISSN 0263-2241,
  • Suman S., Biswas P., Patel S.K., Singh V.P., Kumar A., Kuriachen B.(2020), Measurement of residual stresses in submerged arc welded P91 steel using surface deformation, Materials Today: Proceedings, (21), 3, 1707-1712.
  • Srikarun B., Oo H.Z., Petchsang S., Muangjunburee P. (2019), The effects of dilution and choice of added powder on hardfacing deposited by submerged arc welding, Wear, (424–425), 246-254.
  • Liu X., Xu M., Shi Q., Kang J., Procario J., Hou W., Manohar M. (2019), Analysis of niobium-rich phases in the submerged arc welds of high strength low alloy steel, Materialia, (7), 100340, ISSN 2589-1529.
  • Zahiri R., Sundaramoorthy R., Lysz P., Subramanian C. (2014), Hardfacing using ferro-alloy powder mixtures by submerged arc welding, Surface and Coatings Technology, (260), 220-229.
  • Lin H., Ying L., Jun L., Binghong L. (2014), Microstructure and mechanical properties for TIG welding joint of high boron Fe-Ti-B alloy, Rare Metal Materials and Engineering, (43), 283-286.
  • Yüksel N., Sahin S. (2014), Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys, Materials & Design, (58), pp. 491-498.
  • Kirchgaßner Badisch M.E., Franek F. (2008), Behaviour of iron-based hardfacing alloys under abrasion and impact, Wear, (265), 772-779.
  • Berns H., Fischer A. (1987), Microstructure of Fe-Cr -C-B alloys addition of Nb, Ti and B, Metallography, (20), 401-429.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Kaptanoğlu 0000-0002-6295-610X

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Kaptanoğlu, M. (2020). Kaynak Akımı Değişiminin Karbür ve Boro-karbür içeren Kaplamalara Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(20), 827-834. https://doi.org/10.31590/ejosat.747441