Research Article
BibTex RIS Cite

Investigation of the Effect of Corn Stalk Supported-Zn Catalyst Treated with HCl on Hydrogen Production

Year 2020, , 539 - 547, 31.12.2020
https://doi.org/10.31590/ejosat.759605

Abstract

In this study, corn stalk was used as a direct support material for the catalyst production for the first time. The aim is to synthesize catalysts from low-cost organic wastes containing a high-efficiency metal that can be used for hydrogen production. In the catalyst preparation, the most effective catalyst for hydrogen production rate (HGR) was prepared by conducting experiments with different metal ratios (% 10, % 20, % 30 and % 40), different acid concentrations (1M, 3M, 5M and 7M), different combustion temperatures (300 oC, 400 oC, 500 oC and 600 oC) and different combustion times (15 min., 30 min., 45 min. and 60 min.) Hydrochloric acid (3M HCl) was used to protonate the maize stalk to be used as a catalyst support agent for the production of hydrogen from the methanolis reaction of sodium borohydride. In terms of performance for corn stalk assisted-Zn catalyst (MS-HCl-Zn catalyst) treated with HCl; the most effective catalyst is obtained by burning 15 minutes at 500 oC after the addition of 10% Zn2+. For different temperatures (30, 40, 50, 60 oC) and reusability experiments of the MS-HCl-Zn catalyst were performed. In addition, FTIR and ICP-OES analyzes were performed for characterization of the produced catalyst. As a result, the reaction rates for 30 and 60 °C in the 2.5% NaBH4 methanolis reaction catalyzed by the MS-HCl-Zn catalyst were found to be 5027 and 7875.2 mLmin-1g.cat-1, respectively. The activation energy of the MS-HCl-Zn catalyst was calculated as 22.9 kJ mol-1. Reusability experiments were repeated five times under the same conditions and almost 100% conversion was achieved with each use.

References

  • Barghi, S. H., Tsotsis, T. T., & Sahimi, M. (2014). Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. International journal of hydrogen energy, 39(3), 1390-1397.
  • Bekirogullari, M. (2020). Hydrogen production from sodium borohydride by ZnCl2 treated defatted spent coffee ground catalyst. International journal of hydrogen energy, 45(16), 9733-9743.
  • Chamoun, R., Demirci, U., Zaatar, Y., Khoury, A., & Miele, P. (2010). Co-αAl2O3-Cu as shaped catalyst in NaBH4 hydrolysis. International journal of hydrogen energy, 35(13), 6583-6591.
  • Choi, J., Wagner, P., Gambhir, S., Jalili, R., MacFarlane, D. R., Wallace, G. G., & Officer, D. L. (2019). Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Letters, 4(3), 666-672.
  • Demirci, S., Sunol, A. K., & Sahiner, N. (2020). Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental, 261, 118242.
  • Fernandes, V., Pinto, A., & Rangel, C. (2010). Hydrogen production from sodium borohydride in methanol–water mixtures. International journal of hydrogen energy, 35(18), 9862-9868.
  • Gao, P., Wang, Y., Yang, S., Chen, Y., Xue, Z., Wang, L., Li, G., & Sun, Y. (2012). Mechanical alloying preparation of fullerene-like Co3C nanoparticles with high hydrogen storage ability. International journal of hydrogen energy, 37(22), 17126-17130.
  • He, J., Burt, S. P., Ball, M. R., Hermans, I., Dumesic, J. A., & Huber, G. W. (2019). Catalytic CO bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts. Applied Catalysis B: Environmental, 258, 117945.
  • Jacobson, M. Z., Colella, W., & Golden, D. (2005). Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science, 308(5730), 1901-1905.
  • Jean-Baptiste, P., & Ducroux, R. (2003). Energy policy and climate change. Energy policy, 31(2), 155-166.
  • Kaya, M. (2019). Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. International journal of hydrogen energy.
  • Kaya, M., & Bekirogullari, M. (2019). Investigation of hydrogen production from sodium borohydride methanolysis in the presence of Al2O3/spirulina platensis supported Co catalyst. Avrupa Bilim ve Teknoloji Dergisi(16), 69-76.
  • Kaya, M., Bekiroğullari, M., & Saka, C. (2019). Highly efficient CoB catalyst using a support material based on Spirulina microalgal strain treated with ZnCl2 for hydrogen generation via sodium borohydride methanolysis. International Journal of Energy Research, 43(9), 4243-4252.
  • Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., Jeng, M.-S., & Tsau, F. (2009). Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. International journal of hydrogen energy, 34(5), 2153-2163.
  • Lo, C.-t. F., Karan, K., & Davis, B. R. (2007). Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Industrial & engineering chemistry research, 46(17), 5478-5484.
  • Muradov, N. Z., & Veziroğlu, T. N. (2008). “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. International journal of hydrogen energy, 33(23), 6804-6839.
  • Ozay, O., Aktas, N., Inger, E., & Sahiner, N. (2011). Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International journal of hydrogen energy, 36(3), 1998-2006.
  • Sahiner, N. (2017). Modified multi-wall carbon nanotubes as metal free catalyst for application in H2 production from methanolysis of NaBH4. Journal of Power Sources, 366, 178-184.
  • Saka, C., Kaya, M., & Bekiroğullari, M. (2020). Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. International journal of hydrogen energy, 45(3), 1959-1968.
  • Schlapbach, L., & Züttel, A. (2011). Hydrogen-storage materials for mobile applications. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group (pp. 265-270). World Scientific.
  • Shi, W., Gao, Y., Yang, G., & Zhao, Y. (2013). Conversion of cornstalk to bio-oil in hot-compressed water: effects of ultrasonic pretreatment on the yield and chemical composition of bio-oil, carbon balance, and energy recovery. Journal of agricultural and food chemistry, 61(31), 7574-7582.
  • Sun, F., & Chen, H. (2008). Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(5), 707-714.
  • Szelwicka, A., Zawadzki, P., Sitko, M., Boncel, S., Czardybon, W., & Chrobok, A. (2019). Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Organic Process Research & Development, 23(7), 1386-1395.
  • Wang, M., Ouyang, L., Liu, J., Wang, H., & Zhu, M. (2017). Hydrogen generation from sodium borohydride hydrolysis accelerated by zinc chloride without catalyst: A kinetic study. Journal of Alloys and Compounds, 717, 48-54.
  • Wang, Y., Liu, J., Wang, K., Chen, T., Tan, X., & Li, C. M. (2011). Hydrogen storage in Ni–B nanoalloy-doped 2D graphene. International journal of hydrogen energy, 36(20), 12950-12954.
  • Zahmakiran, M., & Ozkar, S. (2009). Zeolite-confined ruthenium (0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride. Langmuir, 25(5), 2667-2678.
  • Zhu, J., Li, R., Niu, W., Wu, Y., & Gou, X. (2013). Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles. International journal of hydrogen energy, 38(25), 10864-10870.

HCl ile Muamele Edilmiş Mısır Sapı Destekli-Zn Katalizörünün Hidrojen Üretimine Etkisinin Araştırılması

Year 2020, , 539 - 547, 31.12.2020
https://doi.org/10.31590/ejosat.759605

Abstract

Bu çalışmada, katalizör üretimi için mısır sapı ilk kez doğrudan destek malzemesi olarak kullanılmıştır. Amaç, düşük maliyetli organik atıklardan hidrojen üretimi için kullanılabilecek yüksek etkinliğe sahip bir metal içeren katalizörler sentezlemektir. Katalizör hazırlanmasında farklı metal oranları (% 10, % 20, % 30, % 40), farklı asit konsantrasyonları (1M, 3M, 5M ve 7M) farklı yanma sıcaklıkları (300 oC, 400 oC, 500 oC ve 600 oC) ve farklı yanma sürelerinde (15 dak., 30 dak., 45 dak. ve 60 dak.) deneyler yapılarak hidrojen üretim hızı (HGR) açısından en etkili katalizör hazırlanmıştır. Sodyum borhidrürün metanoliz reaksiyonundan hidrojen üretimi için katalizör destek maddesi olarak kullanılacak mısır sapının protonlanması için hidroklorik asit (3M HCl) kullanılmıştır. Performans açısından HCl ile muamele edilmiş mısır sapı destekli-Zn katalizörünün (MS-HCl-Zn katalizörü) optimum şartları; en etkili katalizör % 10 Zn+2 ilavesinden sonra 500 o C’de 15 dakika yakılması sonucu elde edilmiştir. Bununla birlikte MS-HCl-Zn katalizörünün dört farklı sıcaklık (30, 40, 50, 60 oC) ve yeniden kullanılabilirlik deneyleri yapılmıştır. Ayrıca hazırlanan katalizörün karakterizasyonu için FTIR ve ICP-OES analizleri yapılmıştır. Sonuç olarak MS-HCl-Zn katalizörü tarafından katalize edilen % 2.5 NaBH4 metanoliz reaksiyonunda 30 oC ve 60 °C için reaksiyon hızları sırasıyla 5027 ve 7875.2 mLdak-1g.kat-1 olarak bulunmuştur. MS-HCl-Zn katalizörünün aktivasyon enerjisi ise 22.9 kJ mol-1 olarak hesaplanmıştır. Yeniden kullanılabilirlik deneyleri de aynı koşullar altında beş kez tekrarlanmış ve her kullanımda neredeyse %100 dönüşüm elde edilmiştir.

References

  • Barghi, S. H., Tsotsis, T. T., & Sahimi, M. (2014). Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. International journal of hydrogen energy, 39(3), 1390-1397.
  • Bekirogullari, M. (2020). Hydrogen production from sodium borohydride by ZnCl2 treated defatted spent coffee ground catalyst. International journal of hydrogen energy, 45(16), 9733-9743.
  • Chamoun, R., Demirci, U., Zaatar, Y., Khoury, A., & Miele, P. (2010). Co-αAl2O3-Cu as shaped catalyst in NaBH4 hydrolysis. International journal of hydrogen energy, 35(13), 6583-6591.
  • Choi, J., Wagner, P., Gambhir, S., Jalili, R., MacFarlane, D. R., Wallace, G. G., & Officer, D. L. (2019). Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Letters, 4(3), 666-672.
  • Demirci, S., Sunol, A. K., & Sahiner, N. (2020). Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental, 261, 118242.
  • Fernandes, V., Pinto, A., & Rangel, C. (2010). Hydrogen production from sodium borohydride in methanol–water mixtures. International journal of hydrogen energy, 35(18), 9862-9868.
  • Gao, P., Wang, Y., Yang, S., Chen, Y., Xue, Z., Wang, L., Li, G., & Sun, Y. (2012). Mechanical alloying preparation of fullerene-like Co3C nanoparticles with high hydrogen storage ability. International journal of hydrogen energy, 37(22), 17126-17130.
  • He, J., Burt, S. P., Ball, M. R., Hermans, I., Dumesic, J. A., & Huber, G. W. (2019). Catalytic CO bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts. Applied Catalysis B: Environmental, 258, 117945.
  • Jacobson, M. Z., Colella, W., & Golden, D. (2005). Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science, 308(5730), 1901-1905.
  • Jean-Baptiste, P., & Ducroux, R. (2003). Energy policy and climate change. Energy policy, 31(2), 155-166.
  • Kaya, M. (2019). Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis. International journal of hydrogen energy.
  • Kaya, M., & Bekirogullari, M. (2019). Investigation of hydrogen production from sodium borohydride methanolysis in the presence of Al2O3/spirulina platensis supported Co catalyst. Avrupa Bilim ve Teknoloji Dergisi(16), 69-76.
  • Kaya, M., Bekiroğullari, M., & Saka, C. (2019). Highly efficient CoB catalyst using a support material based on Spirulina microalgal strain treated with ZnCl2 for hydrogen generation via sodium borohydride methanolysis. International Journal of Energy Research, 43(9), 4243-4252.
  • Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., Jeng, M.-S., & Tsau, F. (2009). Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. International journal of hydrogen energy, 34(5), 2153-2163.
  • Lo, C.-t. F., Karan, K., & Davis, B. R. (2007). Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Industrial & engineering chemistry research, 46(17), 5478-5484.
  • Muradov, N. Z., & Veziroğlu, T. N. (2008). “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. International journal of hydrogen energy, 33(23), 6804-6839.
  • Ozay, O., Aktas, N., Inger, E., & Sahiner, N. (2011). Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International journal of hydrogen energy, 36(3), 1998-2006.
  • Sahiner, N. (2017). Modified multi-wall carbon nanotubes as metal free catalyst for application in H2 production from methanolysis of NaBH4. Journal of Power Sources, 366, 178-184.
  • Saka, C., Kaya, M., & Bekiroğullari, M. (2020). Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. International journal of hydrogen energy, 45(3), 1959-1968.
  • Schlapbach, L., & Züttel, A. (2011). Hydrogen-storage materials for mobile applications. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group (pp. 265-270). World Scientific.
  • Shi, W., Gao, Y., Yang, G., & Zhao, Y. (2013). Conversion of cornstalk to bio-oil in hot-compressed water: effects of ultrasonic pretreatment on the yield and chemical composition of bio-oil, carbon balance, and energy recovery. Journal of agricultural and food chemistry, 61(31), 7574-7582.
  • Sun, F., & Chen, H. (2008). Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(5), 707-714.
  • Szelwicka, A., Zawadzki, P., Sitko, M., Boncel, S., Czardybon, W., & Chrobok, A. (2019). Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Organic Process Research & Development, 23(7), 1386-1395.
  • Wang, M., Ouyang, L., Liu, J., Wang, H., & Zhu, M. (2017). Hydrogen generation from sodium borohydride hydrolysis accelerated by zinc chloride without catalyst: A kinetic study. Journal of Alloys and Compounds, 717, 48-54.
  • Wang, Y., Liu, J., Wang, K., Chen, T., Tan, X., & Li, C. M. (2011). Hydrogen storage in Ni–B nanoalloy-doped 2D graphene. International journal of hydrogen energy, 36(20), 12950-12954.
  • Zahmakiran, M., & Ozkar, S. (2009). Zeolite-confined ruthenium (0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride. Langmuir, 25(5), 2667-2678.
  • Zhu, J., Li, R., Niu, W., Wu, Y., & Gou, X. (2013). Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles. International journal of hydrogen energy, 38(25), 10864-10870.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Duygu Elma Karakaş 0000-0003-2582-9993

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Elma Karakaş, D. (2020). HCl ile Muamele Edilmiş Mısır Sapı Destekli-Zn Katalizörünün Hidrojen Üretimine Etkisinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(20), 539-547. https://doi.org/10.31590/ejosat.759605