Identification systems are designed using highly reliable personal data. Accuracy rate and reliability are the most basic parameters of these systems. Electroencephalography (EEG) signal varies depending on time, internal and environmental factors. As a result of the studies, the usability of the EEG signal in identification systems has been confirmed. It is understood that the signals produced by the body are personalized signals when the environmental effects are minimized. Successful results are known in the time series of the Long-Short Term Memory (LSTM) method. In this study, an identification system was designed by using LSTM method, which is one of the deep learning techniques. Before the LSTM is used, the EEG is subdivided into frequency subcomponents through some operations. It was decided to use the delta wave with correlation analysis of these separated frequency subcomponents. The prepared system was examined under different conditions. A total of 200 tests were performed on 3 different training series. The highest accuracy rate is 89.5%. The average accuracy rate is 86,292%. The prepared system is designed to operate under different conditions. The system is open to development using various optimization algorithms.
Tanımlama sistemleri son derece güvenilir kişisel veriler kullanılarak tasarlanmaktadır. Doğruluk oranı ve güvenilirlik bu sistemlerin en temel parametreleridir. Elektroensefalografi (EEG) sinyali zamana, içsel ve çevresel faktörlere bağlı olarak değişir. Yapılan çalışmalar sonucunda EEG sinyalinin tanımlama sistemlerinde kullanılabilirliği teyit edilmiştir. Çevresel etkiler en aza indirildiğinde vücut tarafından üretilen sinyallerin kişiselleştirilmiş sinyaller olduğu anlaşılmaktadır. Uzun Kısa Süreli Bellek (LSTM) yönteminin zaman serilerinde başarılı sonuçlar verdiği bilinmektedir. Bu çalışmada derin öğrenme tekniklerinden biri olan LSTM yöntemi kullanılarak bir tanımlama sistemi tasarlanmıştır. LSTM kullanılmadan once, EEG bazı işlemler ile frekans alt bileşenlerine bölünür. Bu ayrılan frekans alt bileşenlerinin korelasyon analizi ile delta dalgasının kullanılmasına karar verilmiştir. Hazırlanan system farklı koşullar altında incelenmiştir. Üç farklı eğitim serisi üzerinde 200 test yapılmıştır. En yüksek doğruluk oranı %89,5’tir. Ortalama doğruluk oranı %86,292’dir. Hazırlanan system farklı koşullar altında çalışacak şekilde tasarlanmıştır. Sistem çeşitli optimizasyon algoritmalrı kullanılarak gelişime açıktır.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | August 15, 2020 |
Published in Issue | Year 2020 |