Son zamanlarda, güç elektroniği alanında, yeni yarıiletken konsepti oluşturma üzerindeki çalışmalar çok popülerdir. Bu çalışmalar sonucunda, Silisyum Karbit (SiC) ve Galyum Nitrid Yüksek Elektron Mobilite Transistörleri (GaN-HEMT) gibi geniş bant boşluk yarıiletkenleri (WBG) kullanımı, yüksek frekans anahtarlama kapasitesi ve yüksek güç yoğunluğu sağlama özelliği nedeniyle, çok ilgi çekmektedir. Ayrıca, aydınlatma alanında, güç ledleri, matal halide ve enkandesant lambaları gibi diğer aydınlatma türlerine göre yüksek verim özellikleri yüzünden çok göz alıcıdır. Ek olarak, güç ledlerinin çalıştırmak için DC güç gereklidir ve ihtiyaç olan DC gücü sağlamak için en verimli yol, bir DC-DC converter yapısı kullanmaktır. Bu amaç için en iyi çözüm düşürücü-yükseltici tabanlı dönüştürücü topolojisidir. En gösterişli yapılardan birisi tek sonlu birincil endüktans dönüştürücüdür (SEPIC). Bu nedenle, bu çalışmada, Silisyum (Si) MOSFET ve kanal oluşturmalı mod (E-mod) GaN-HEMT Transistor tabanlı yarı iletken anahtar kullanan, SEPIC DC-DC dönüştürcü tabanlı güç ledi sürücü devrelerinin karşılaştırılması yapılmıştır. Ayrıca, SEPIC led sürücüleri 10W güç için tasarlanmıştır ve her iki güç anahtarı için uygulaması ayrı ayrı gerçekleştirilmiştir. Ek olarak, dönüştürücülerin anahtarlama frekansı 100 kHz olarak seçilmiştir ve güç anahtarları için PWM sinyali üretmek ve ACS712 akım sensörü üzerinden güç ledleri maksimum akımını sınırlandırmak için dsPIC30F4011 mikrodenetleyicisi kullanılmıştır. Gerçekleştirilen uygulamalar üzerinden, güç ledi akımı, güç ledi gerilimi, giriş akımı, giriş gerilimi ve giriş tarafı bobin akımı, anahtar gerilimi, kapı direnci gerilimleri ölçülmüştür ve hem Si hem de GaN tabanlı güç ledi uygulaması için karşılaştırılmıştır. Karşılaştırmalar sonucunda, benzer sonuçlar elde edilmesine ragmen, Si Mosfet kullanan devrenin verimi, E-Mod GaN-HEMT li devreye göre çok az yüksek olarak elde edilmiştir. Ayrıca, E-Mod GaN-HEMT li devrenin gürültülere karşı daha hassas olduğu tespit edilmiştir ve lehimi yapılırken daha fazla dikkat gerekmektedir.
Recently, in power electronics, studies on creating new semiconductor concept is so popular. As a result of this studies, using of wide band gap semiconductors (WBG) such as Silicon Carbide (SiC) Mosfets and Gallium Nitride High Electron Mobility Transistors (GaN-HEMT) has gained much attention due to the its high switching frequncy capability and providing high power density feature. Furthermore, in the field of illumination, power leds is so eye cathing because of their high efficinecy feature with respect to other kind of illumination such as metal halide and incandesant bulbs. In addition, to operate power leds, DC power is required and the most efficient way to provide required DC power is to use one of the DC-DC converter topologies. Buck-boost derived converter topology is the best solution fort that purpose. One of the flashiest topologies is single ended primary inductor (SEPIC) converter. Therefore, in this paper, comparison of SEPIC DC-DC converter-based power led driver using silicon (Si) and enhancement mode (E-mode) GaN-HEMT based power switch is made. Also, SEPIC led drivers are designed for 10W power led and implementations for both power switches are realized. In addition, switching frequency of converters is chosen as 100kHz and dsPIC30F4011 micro controller is used to produce PWM signal for power switches and to limit maximum current of power leds by using ACS712 current sensor. By means of the applications, power led current, power led voltage, input current, input voltage and input side inductor current, switch voltage, gate resistor voltage are measured and compared for both Si and GaN based power switches. As a result of comparisons, altough similar results are obtained, circuit using Si MOSFET has slightly higher efficiency than E-Mode GaN-HEMT used circuit. Besides, circuit using E-Mode GaN-HEMT is more sensitivity to the noises and needs extra care for its soldering.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | August 15, 2020 |
Published in Issue | Year 2020 |