Research Article
BibTex RIS Cite

Görünür Işık Haberleşmesi için Dörtlü Uzamsal Darbe Genlik Modülasyonu ve Genelleştirilmiş Versiyonları

Year 2021, , 402 - 409, 31.01.2021
https://doi.org/10.31590/ejosat.793791

Abstract

Dörtlü uzamsal modülasyon (QSM), kanallar arası girişimi (ICI) tamamen önleyen ve uzamsal modülasyondan (SM) daha fazla çoğullama kazancı sağlayan bir modülasyon planı olarak çok-girişli çok-çıkışlı (MIMO) sistemler için ümit verici bir tekniktir. QSM'de, verici antenlerin indisleri tarafından iletilen bilgiler, eş fazlı ve karesel bileşenler sayesinde iki katına çıkar. Bu bağlamda, bu yazıda, ortogonal darbeler yardımıyla görünür ışık haberleşmesi (VLC) için QSM'yi mümkün kılan dörtlü uzamsal darbe genlik modülasyonu (QSPAM) önerilmiştir. Bu çalışmada aynı zamanda, QSPAM'ın genişletilmiş çeşitleri olan genelleştirilmiş QSPAM (GQSPAM) ve değişken uzunluklu genelleştirilmiş QSPAM (VGQSPAM) da önerilmiştir. İyi bilinen bir modülasyon planı olan, uzamsal darbe genlik modülasyonu (SPAM) performans kıyaslaması yapmak için kullanılmıştır. Önerilen şemalar, uzamsal alanı verimli bir şekilde kullanır ve daha az ışık yayan diyot (LED) ile spektral verimliliği artırır. İç mekan MIMO VLC sistemlerinin kanal korelasyon problemi için önerilen açısal çeşitlemeli alıcı (ADR), alıcı ünite olarak kullanılmıştır. ADR kanal korelasyonunu azaltmasına rağmen odanın köşesinde yeterli değildir. Bu nedenle, zorlu koşullar için dışbükey optimizasyon yardımı ile bir ön kodlama matrisi oluşturulmuştur. Değerlendirilen modülasyon şemalarının bit hata oranı (BER) performansı, Monte Carlo simülasyonları yoluyla elde edilmiş ve üst sınır BER performansları da bu sonuçları doğrulamak için analitik olarak türetilmiştir. Ek olarak, spektral verimlilik (SE) ve sinyal-gürültü oranı (SNR) grafikleri, 10-5 sabit sembol hata oranında (SER) elde edilmiştir. Sonuçlara göre, VGQSPAM, kanal korelasyonu düşük olduğunda diğer önerilen şemalardan ve SPAM’dan daha iyi performans gösterir. Bununla birlikte, GQSPAM zorlu koşullar için VGQSPAM'den daha iyi performans göstermiştir.

References

  • Zeng L., et al. 2009. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting, IEEE Journal on Selected Areas in Communications, 27, 9, pp. 1654–1662. https://doi.org/10.1109/JSAC.2009.091215
  • Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura S., and Hanzo, L. 2014. Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation, Proceedings of the IEEE, 102, 1, pp. 56–103. https://doi.org/10.1109/JPROC.2013.2287851
  • Mesleh, R., Ikki S. S., and Aggoune, H. M. 2015. Quadrature Spatial Modulation, IEEE Trans. Vehicular Tech., 64, 6 pp. 738–742. https://doi.org/10.1109/TVT.2014.2344036
  • Mesleh, R., Hiari, O., Younis, A. 2018. Generalized space modulation techniques: Hardware design and considerations, Physical Communication, 26, pp.87-95. https://doi.org/10.1016/j.phycom.2017.11.009
  • Castillo-Soria, F. R., Cortez-González, J., Ramirez-Gutierrez, R., Maciel-Barboza F. M., and Soriano-Equigua, L. 2017. Generalized quadrature spatial modulation scheme using antenna grouping, ETRI Journal, 39, 5, pp. 707-717. https://doi.org/10.4218/etrij.17.0117.0162
  • Hussein, H. S., and Elsayed, M. 2018. Fully-Quadrature Spatial Modulation, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Batumi, pp. 1-5. https://doi.org/10.1109/BlackSeaCom.2018.8433718
  • Celik, Y., and Colak, S. A. 2020. Quadrature spatial modulation sub-carrier intensity modulation (QSM-SIM) for VLC, Physical Communication, 38, pp. 1-10. https://doi.org/10.1016/j.phycom.2019.100937
  • Dimitrov, S. and Haas, H. 2015. Principles of LED Light Communications, Cambridge University Press, Cambridge, UK.
  • Barry, J. R. 1994. Wireless Infrared Communications, Norwell, MA Kluwer.
  • Islim, M. S. and Haas, H. 2016. Modulation Techniques for Li-Fi, ZTE Communications, 14, 2, pp. 29-40. https://www.research.ed.ac.uk/portal/en/publications/modulation-techniques-for-lifi
  • Nuwanpriya, A., et. al. 2015. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users, IEEE Journal on Selected Areas in Communications, 33, 9, pp.1780-1792. https://doi.org/10.1109/JSAC.2015.2432514
  • Lee, K., Park, H., and Barry, J. 2011. Indoor Channel Characteristics for Visible Light Communications, IEEE Commun. Lett., 15, 2, pp. 217-219. https://doi.org/10.1109/LCOMM.2011.010411.101945
  • Fath, T. and Haas, H. 2013. Performance comparison of MIMO techniques for optical wireless communications in indoor environments, IEEE Transactions on Communications, 61, 2, pp. 733–742. https://doi.org/10.1109/ TCOMM.2012.120512.110578
  • Mesleh, R., and Alhassi, A. 2018. Space Modulation Techniques, Hoboken, NJ, USA:Wiley.
  • Lee, M.C., Chung, W.H., and Lee, T.S. 2015. Generalized precoder design formulation and iterative algorithm for spatial modulation in MIMO systems with CSIT, IEEE Trans. on Comm., 63, 4, pp. 1230-1244. https://doi.org/10.1109/TCOMM.2015.2396521
  • Cheng, P., and et al. 2018. A unified precoding scheme for generalized spatial modulation, IEEE Trans. on Comm., 66, 6, pp. 2502-2514. https://doi.org/10.1109/TCOMM.2018.2796605
  • Grant, M. and Boyd., S. 2013. CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx
  • Zhang, H. and Gulliver, T.A. 2005. Pulse position amplitude Modulation for time-hopping multiple-access UWB communications, in IEEE Transactions on Communications, 53, 8, pp. 1269-1273.
  • Olanrewaju, H.G., Thompson, J., and Popoola, W.O. 2016. On spatial pulse position modulation for optical wireless communications, 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), pp. 44-45. https://doi.org/10.1109/PHOSST.2016.7548717
  • Alaka, S. P., Narasimhan, T., and Chockalingam, A. 2015. Generalized Spatial Modulation in Indoor Wireless Visible Light Communication, IEEE Global Communications Conference (GLOBECOM), pp. 1-7. https://doi.org/10.1109/GLOCOM.2015.7416970

Quadrature Spatial Pulse Amplitude Modulation and Generalized Versions for VLC

Year 2021, , 402 - 409, 31.01.2021
https://doi.org/10.31590/ejosat.793791

Abstract

Quadrature spatial modulation (QSM) is a promising technique for multiple-input-multiple-output (MIMO) systems that completely prevents inter-channel interference (ICI) and provides spatial multiplexing gain greater than spatial modulation (SM). In QSM, the information conveyed by the indices of the transmit antennas doubles thanks to the in-phase and quadrature components. In this regard, the quadrature spatial pulse amplitude modulation (QSPAM), which enables QSM for visible light communication (VLC) with the help of orthogonal pulses, is proposed in this paper. Generalized versions of QSPAM, i.e. generalized QSPAM (GQSPAM) and variable-length generalized QSPAM (VGQSPAM) have also been proposed and a well-known scheme, spatial pulse amplitude modulation (SPAM), is used as a benchmark. The proposed schemes efficiently use the spatial domain and increase spectral efficiency with fewer light-emitting diodes (LEDs). The angular diversity receiver (ADR) proposed for the channel correlation problem of indoor MIMO VLC systems is used as the receiver unit. Although ADR reduces channel correlation, it is not sufficient in the corner of the room. Therefore, a precoding matrix is generated with the help of convex optimization for demanding conditions. The bit error rate (BER) performance of considered modulation schemes is obtained through Monte Carlo simulations and, the upper bound BER performances are also derived analytically to validate these results. Additionally, spectral efficiency (SE) versus signal-to-noise ratio (SNR) graphs are obtained at a fixed symbol error rate (SER) of 10-5. According to the results, VGQSPAM performs better than the other schemes and benchmarks when the channel correlation is low. However, GQSPAM outperforms VGQSPAM for harsh conditions.

References

  • Zeng L., et al. 2009. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting, IEEE Journal on Selected Areas in Communications, 27, 9, pp. 1654–1662. https://doi.org/10.1109/JSAC.2009.091215
  • Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura S., and Hanzo, L. 2014. Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation, Proceedings of the IEEE, 102, 1, pp. 56–103. https://doi.org/10.1109/JPROC.2013.2287851
  • Mesleh, R., Ikki S. S., and Aggoune, H. M. 2015. Quadrature Spatial Modulation, IEEE Trans. Vehicular Tech., 64, 6 pp. 738–742. https://doi.org/10.1109/TVT.2014.2344036
  • Mesleh, R., Hiari, O., Younis, A. 2018. Generalized space modulation techniques: Hardware design and considerations, Physical Communication, 26, pp.87-95. https://doi.org/10.1016/j.phycom.2017.11.009
  • Castillo-Soria, F. R., Cortez-González, J., Ramirez-Gutierrez, R., Maciel-Barboza F. M., and Soriano-Equigua, L. 2017. Generalized quadrature spatial modulation scheme using antenna grouping, ETRI Journal, 39, 5, pp. 707-717. https://doi.org/10.4218/etrij.17.0117.0162
  • Hussein, H. S., and Elsayed, M. 2018. Fully-Quadrature Spatial Modulation, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Batumi, pp. 1-5. https://doi.org/10.1109/BlackSeaCom.2018.8433718
  • Celik, Y., and Colak, S. A. 2020. Quadrature spatial modulation sub-carrier intensity modulation (QSM-SIM) for VLC, Physical Communication, 38, pp. 1-10. https://doi.org/10.1016/j.phycom.2019.100937
  • Dimitrov, S. and Haas, H. 2015. Principles of LED Light Communications, Cambridge University Press, Cambridge, UK.
  • Barry, J. R. 1994. Wireless Infrared Communications, Norwell, MA Kluwer.
  • Islim, M. S. and Haas, H. 2016. Modulation Techniques for Li-Fi, ZTE Communications, 14, 2, pp. 29-40. https://www.research.ed.ac.uk/portal/en/publications/modulation-techniques-for-lifi
  • Nuwanpriya, A., et. al. 2015. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users, IEEE Journal on Selected Areas in Communications, 33, 9, pp.1780-1792. https://doi.org/10.1109/JSAC.2015.2432514
  • Lee, K., Park, H., and Barry, J. 2011. Indoor Channel Characteristics for Visible Light Communications, IEEE Commun. Lett., 15, 2, pp. 217-219. https://doi.org/10.1109/LCOMM.2011.010411.101945
  • Fath, T. and Haas, H. 2013. Performance comparison of MIMO techniques for optical wireless communications in indoor environments, IEEE Transactions on Communications, 61, 2, pp. 733–742. https://doi.org/10.1109/ TCOMM.2012.120512.110578
  • Mesleh, R., and Alhassi, A. 2018. Space Modulation Techniques, Hoboken, NJ, USA:Wiley.
  • Lee, M.C., Chung, W.H., and Lee, T.S. 2015. Generalized precoder design formulation and iterative algorithm for spatial modulation in MIMO systems with CSIT, IEEE Trans. on Comm., 63, 4, pp. 1230-1244. https://doi.org/10.1109/TCOMM.2015.2396521
  • Cheng, P., and et al. 2018. A unified precoding scheme for generalized spatial modulation, IEEE Trans. on Comm., 66, 6, pp. 2502-2514. https://doi.org/10.1109/TCOMM.2018.2796605
  • Grant, M. and Boyd., S. 2013. CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx
  • Zhang, H. and Gulliver, T.A. 2005. Pulse position amplitude Modulation for time-hopping multiple-access UWB communications, in IEEE Transactions on Communications, 53, 8, pp. 1269-1273.
  • Olanrewaju, H.G., Thompson, J., and Popoola, W.O. 2016. On spatial pulse position modulation for optical wireless communications, 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), pp. 44-45. https://doi.org/10.1109/PHOSST.2016.7548717
  • Alaka, S. P., Narasimhan, T., and Chockalingam, A. 2015. Generalized Spatial Modulation in Indoor Wireless Visible Light Communication, IEEE Global Communications Conference (GLOBECOM), pp. 1-7. https://doi.org/10.1109/GLOCOM.2015.7416970
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yasin Çelik 0000-0001-8972-9970

Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Çelik, Y. (2021). Quadrature Spatial Pulse Amplitude Modulation and Generalized Versions for VLC. Avrupa Bilim Ve Teknoloji Dergisi(21), 402-409. https://doi.org/10.31590/ejosat.793791