Research Article
BibTex RIS Cite

Correlation for Multichannel Analysis of Surface Waves determined shear wave velocity as a function of plasticity index and standard penetration test resistance for clay soils

Year 2020, , 490 - 497, 31.12.2020
https://doi.org/10.31590/ejosat.794260

Abstract

It is possible to obtain advance soil parameters via basic characteristic tests on soil specimens. Shear wave velocity is an important soil parameter required for advance soil models and can be determined during the field investigation of such weak and problematic soils. Various geophysical techniques have been utilized in past to determine the shear wave velocity. Among those techniques Multichannel analysis of surface waves (MASW) method is the most widely used one. Named shallow depth ground investigation technique has a great importance in geotechnical applications.
In this study, shear wave velocity measurements via MASW technique performed in various sides of North Cyprus have been correlated to the Standard penetration blow number (SPT-N) and plasticity index (PI) value obtained via undisturbed samples at same locations. Evaluation of results have revealed that there is a good correlation between simple, easy and cheap to obtain soil mechanic parameters such as plasticity index and SPT-N number to more advance and expensive to obtain parameters such as shear wave velocity via MASW. Regression factor of shear wave velocity verses plasticity index found to be as successful as 93% and Shear wave velocity verses SPT-N as 74%. It is also evidential that plasticity index and shear wave velocity has invers correlation where SPT-N verses shear wave velocity is directly correlated.
It is essential to know that most of soil parameters are correlated to each other with various ways and it is important to highlight those differences in correlations. Therefore, it is evidential that a parameter which can be used in advance soil modelling, shear wave velocity, can be obtained via simple, fast, and cheap experiments such as characterisation and standard penetration tests. It is evidential from the results that regression analysis of shear wave velocity verses plasticity index has high regression factor where such relationship shows strong mechanical link between those parameters.

References

  • ASTM D2487-17e1. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017.
  • ASTM D1586 / D1586M-18, Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils, ASTM International, West Conshohocken, PA, 2018, www.astm.org
  • ASTM D4318-17e1. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; ASTM International: West Conshohocken, PA, USA, 2017.
  • Ataee, O., Moghaddas, N. H., & Lashkaripour, G. R. (2019) Estimating shear wave velocity of soil using standard penetration test (SPT) blow counts in Mashhad city. Journal of Earth System Science, 128(3). doi: 10.1007/s12040-019-1077-x
  • Boadu, F.K. (2000) Predicting the transport properties of fractured rocks from seismic information: numerical experiments. Journal of Applied Geophysics, 44: 103–113.
  • Brandenberg, S. J., Bellana, N., & Shantz, T. (2010). Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dynamics and Earthquake Engineering, 30(10), 1026-1035.
  • Chik, Z., Ariestianty, S. K., Rosyidi, S. A. P., Nayan, K. A. M., & Taha, M. (2010) Field Measurement of Dynamic Soil Properties of Tropical Meta-Sediment Residual Soils.
  • Chrzan, T. (1997). The determination of rocks’ mechanical properties with the use of ultrasounds. In Mine Planning and Equipment Selection 1997: Proceedings of the 6th International Symposium, Ostrava, Czech Republic, 3–9 September 1997. Edited by V. Strakos, V. Kebo, R. Farana, and L. Smutny. A.A. Balkema, Rotterdam, The Netherlands. pp. 315–318.
  • Fener, M., Kahraman, S., Bay, Y., & Gunaydin, O. (2005). Correlations between P-wave velocity and Atterberg limits of cohesive soils. Canadian Geotechnical Journal, 42(2), 673–677. doi: 10.1139/t04-102.
  • Hakyemez,Y. H. (2014). Kuzey Kıbrıs’ın Temel Jeolojik Özellikleri. TPJD Bülteni, Cilt 26, Sayı 2, Sayfa 7-46, 2014.
  • Hakyemez, Y.; Turhan, N.; Sönmez, İ.; Sümengen, M. (2000). Kuzey Kıbrıs’ın Jeolojik Özellikleri; Maden Tetkik ve Arama Genel Müdürlüğü: Ankara, Türkiye; yayınlanmamış rapor.
  • Kahraman, S. (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 38: 981–994.
  • Kibris Türk Mühendis ve Mimar Odaları Birliği İnşaat Mühendisleri Odası (Zemin Katman Veritabanı). Online: https://www.ktimo.org/Zemin (ziyaret tarihi 12 Eylül 2020).
  • Kilic, R. (1995) Geomechanical properties of the ophiolites (Cankiri/Turkey) and alteration degree of diabase. Bulletin of the International Association of Engineering Geology, 51: 64–69.
  • Kurtulus, C., Sertcelik, F., Canbay, M. M., & Sertcelik, I. (2010). Estimation of Atterberg limits and bulk mass density of an expansive soil from P-wave velocity measurements. Bulletin of Engineering Geology and The Environment, 69(1), 153-154.
  • Nazarian, S., & Stokoe, K. H. (1989). Nondestructive evaluation of pavements by surface wave method. In Nondestructive testing of pavements and backcalculation of moduli. ASTM International.
  • Nazarian, S. And Stokoe Ii, K. H. (1984) In-situ shear wave velocity from spectral analysis of surface waves. Proc. 8th World Conf On Earthquake Engineering, 3, pp 31-38.
  • Pamuk E., Doğru, F., and Dindar, H. (2015) Yüzey Dalgası Dispersiyon Verisinin Ardışık Ters Çözümü. Yerbilimleri Dergisi, 36(1), 1-18.
  • Park, C.B., R.D. Miller and J. Xia (1998), “Imaging dispersion curves of surface waves on multi-channel record”: [Expanded Abstract]: Soc. Explor. Geophys., pp. 1377-1380.
  • Park, C.B., R.D. Miller and J. Xia (1999), “Multi-channel analysis of surface waves (MASW)”, Geophysics, Vol.64, 3, pp. 800-808.
  • Park, C.B., R.D. Miller and J. Xia (2001), “Offset and resolution of dispersion curve in multichannel analysis of surface waves (MSW)”, Proceedings of the SAGEEP 2001, Denver, Colorado, SSM-4.
  • Ryden, N., Park, C. B., Ulriksen, P., & Miller, R. D. (2004). Multimodal Approach to Seismic Pavement Testing. Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 636–645. doi: 10.1061/(asce)1090-0241(2004)130:6(636)
  • Saikia, A., Baruah, D., Das, K., Rabha, H. J., Dutta, A., Saharia, A. (2017) Predicting Compaction Characteristics of Fine-Grained Soils in Terms of Atterberg Limits. Int. J. of Geosynth. and Ground Eng. 3, 18. https://doi.org/10.1007/s40891-017-0096-4
  • Tezcan, S., Keçeli, A., Özdemir, Z. (2006). Kayma Dalgası Hızı Yardımı ile Zemin Emniyet Gerilmesi Tayini. Şantiye (İnşaat, Makine ve Mimarlık Dergisi), 214, 102-105.
  • Tezcan, S., Özdemir, Z. (2006). Sismik Yöntem ile Zemin Emniyet Gerilmesi Tayininde Temel Boyutları. Şantiye (İnşaat, Makine ve Mimarlık Dergisi), 217,106-108
  • Xia, J., R.D. Miller, C.B. Park and J. Ivanov. (2000), “Construction of 2-D vertical shear-wave velocity field by the multichannel analysis of surface wave technique”,

Killi zeminlerde MASW ile elde edilen kesme dalgası hızı ile plastisite indisi ve standart penetrasyon sayısı korelasyonu

Year 2020, , 490 - 497, 31.12.2020
https://doi.org/10.31590/ejosat.794260

Abstract

Temel zemin mekaniği parametreleri ile karmaşık zemin modeli parametrelerinin elde edilmesi mümkündür. Yumuşak sedimanlar, bir çalışma alanını etkileyecek olası kuvvetli sismik yer hareketinin büyütmesinden sorumlu en önemli faktörlerden biridir. Bu sorunun çalışılması için yapılan Sismik Mikrobölgeleme çalışmalarında kayma dalgası hızı’nın saha araştırmaları çok önem arz etmektedir. Kayma dalgası hızına dayalı zemin profilini belirlemek için farklı jeofizik arama teknikleri kullanılmaktadır. MASW tekniği zemin parametrelerini elde etmek için kullanılan jeofizik çalışma yöntemlerinden bir tanesidir. Yerine özgün olarak sığ yüzey altı topografya araştırmalarında hızlıca uygulanabilen doğaya tahribatsız ve çok hızlı değerlendirme imkânı sunan bu yöntem geoteknik çalışmalar için büyük bir öneme sahiptir.
Çalışma kapsamında farklı noktalarda gerçekleştirilen MASW tekniği ile elde edilen kayma dalgası hızları (Vs), yine aynı noktalarda yapılan sondajlardan elde edilen SPT-N ve örselenmiş zemin numuneleri üzerinde yapılan deneylerle bulunan plastisite indisi (PI) değerleri ile karşılaştırılmıştır. Gerçekleştirilen değerlendirmeler neticesinde kayma dalgası hızları ile plastisite indisi ve SPT-N değerleri arasında bir anlamlı bir ilişki gözlenmiştir. Bu karşılaştırma sonucunda elde edilen bağıntı Plastisite indisi için %93’lük ve SPT-N değerleri için %74’lük bir benzerlik gösterdiği görülmüştür. Elde edilen korelasyon eğrileri göstermiştir ki plastik indisi ile kayma dalgası hızları arasında ters orantı varken, SPT-N değerleri arasında doğru orantı mevcuttur. Zemin mekaniği ile ilişkili her parametre birbiri ile bağlantılı olması gerektiği bilinmekle birlikte, her farklı deneyin birbirlerine göre sağladığı farklılıklar vardır. Bu farklılıkların beraber değerlendirilmesi mevcut zeminin tanımlanmasında daha doğru sonuçlar verecektir.
Sonuç olarak plastisite indisi ve SPT-N gibi doğal zemin üzerinde yapılan deneyler kullanılarak hem yapısal hem de zemin modellerinde kullanımı değerli kayma dalgası hızları arazi çalışmaları öncesinde öngörülebilir.

References

  • ASTM D2487-17e1. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017.
  • ASTM D1586 / D1586M-18, Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils, ASTM International, West Conshohocken, PA, 2018, www.astm.org
  • ASTM D4318-17e1. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; ASTM International: West Conshohocken, PA, USA, 2017.
  • Ataee, O., Moghaddas, N. H., & Lashkaripour, G. R. (2019) Estimating shear wave velocity of soil using standard penetration test (SPT) blow counts in Mashhad city. Journal of Earth System Science, 128(3). doi: 10.1007/s12040-019-1077-x
  • Boadu, F.K. (2000) Predicting the transport properties of fractured rocks from seismic information: numerical experiments. Journal of Applied Geophysics, 44: 103–113.
  • Brandenberg, S. J., Bellana, N., & Shantz, T. (2010). Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dynamics and Earthquake Engineering, 30(10), 1026-1035.
  • Chik, Z., Ariestianty, S. K., Rosyidi, S. A. P., Nayan, K. A. M., & Taha, M. (2010) Field Measurement of Dynamic Soil Properties of Tropical Meta-Sediment Residual Soils.
  • Chrzan, T. (1997). The determination of rocks’ mechanical properties with the use of ultrasounds. In Mine Planning and Equipment Selection 1997: Proceedings of the 6th International Symposium, Ostrava, Czech Republic, 3–9 September 1997. Edited by V. Strakos, V. Kebo, R. Farana, and L. Smutny. A.A. Balkema, Rotterdam, The Netherlands. pp. 315–318.
  • Fener, M., Kahraman, S., Bay, Y., & Gunaydin, O. (2005). Correlations between P-wave velocity and Atterberg limits of cohesive soils. Canadian Geotechnical Journal, 42(2), 673–677. doi: 10.1139/t04-102.
  • Hakyemez,Y. H. (2014). Kuzey Kıbrıs’ın Temel Jeolojik Özellikleri. TPJD Bülteni, Cilt 26, Sayı 2, Sayfa 7-46, 2014.
  • Hakyemez, Y.; Turhan, N.; Sönmez, İ.; Sümengen, M. (2000). Kuzey Kıbrıs’ın Jeolojik Özellikleri; Maden Tetkik ve Arama Genel Müdürlüğü: Ankara, Türkiye; yayınlanmamış rapor.
  • Kahraman, S. (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 38: 981–994.
  • Kibris Türk Mühendis ve Mimar Odaları Birliği İnşaat Mühendisleri Odası (Zemin Katman Veritabanı). Online: https://www.ktimo.org/Zemin (ziyaret tarihi 12 Eylül 2020).
  • Kilic, R. (1995) Geomechanical properties of the ophiolites (Cankiri/Turkey) and alteration degree of diabase. Bulletin of the International Association of Engineering Geology, 51: 64–69.
  • Kurtulus, C., Sertcelik, F., Canbay, M. M., & Sertcelik, I. (2010). Estimation of Atterberg limits and bulk mass density of an expansive soil from P-wave velocity measurements. Bulletin of Engineering Geology and The Environment, 69(1), 153-154.
  • Nazarian, S., & Stokoe, K. H. (1989). Nondestructive evaluation of pavements by surface wave method. In Nondestructive testing of pavements and backcalculation of moduli. ASTM International.
  • Nazarian, S. And Stokoe Ii, K. H. (1984) In-situ shear wave velocity from spectral analysis of surface waves. Proc. 8th World Conf On Earthquake Engineering, 3, pp 31-38.
  • Pamuk E., Doğru, F., and Dindar, H. (2015) Yüzey Dalgası Dispersiyon Verisinin Ardışık Ters Çözümü. Yerbilimleri Dergisi, 36(1), 1-18.
  • Park, C.B., R.D. Miller and J. Xia (1998), “Imaging dispersion curves of surface waves on multi-channel record”: [Expanded Abstract]: Soc. Explor. Geophys., pp. 1377-1380.
  • Park, C.B., R.D. Miller and J. Xia (1999), “Multi-channel analysis of surface waves (MASW)”, Geophysics, Vol.64, 3, pp. 800-808.
  • Park, C.B., R.D. Miller and J. Xia (2001), “Offset and resolution of dispersion curve in multichannel analysis of surface waves (MSW)”, Proceedings of the SAGEEP 2001, Denver, Colorado, SSM-4.
  • Ryden, N., Park, C. B., Ulriksen, P., & Miller, R. D. (2004). Multimodal Approach to Seismic Pavement Testing. Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 636–645. doi: 10.1061/(asce)1090-0241(2004)130:6(636)
  • Saikia, A., Baruah, D., Das, K., Rabha, H. J., Dutta, A., Saharia, A. (2017) Predicting Compaction Characteristics of Fine-Grained Soils in Terms of Atterberg Limits. Int. J. of Geosynth. and Ground Eng. 3, 18. https://doi.org/10.1007/s40891-017-0096-4
  • Tezcan, S., Keçeli, A., Özdemir, Z. (2006). Kayma Dalgası Hızı Yardımı ile Zemin Emniyet Gerilmesi Tayini. Şantiye (İnşaat, Makine ve Mimarlık Dergisi), 214, 102-105.
  • Tezcan, S., Özdemir, Z. (2006). Sismik Yöntem ile Zemin Emniyet Gerilmesi Tayininde Temel Boyutları. Şantiye (İnşaat, Makine ve Mimarlık Dergisi), 217,106-108
  • Xia, J., R.D. Miller, C.B. Park and J. Ivanov. (2000), “Construction of 2-D vertical shear-wave velocity field by the multichannel analysis of surface wave technique”,
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Arif Özyankı This is me

Hilmi Dindar This is me 0000-0001-5348-0296

Abdullah Ekinci 0000-0002-6787-9983

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Özyankı, A., Dindar, H., & Ekinci, A. (2020). Killi zeminlerde MASW ile elde edilen kesme dalgası hızı ile plastisite indisi ve standart penetrasyon sayısı korelasyonu. Avrupa Bilim Ve Teknoloji Dergisi(20), 490-497. https://doi.org/10.31590/ejosat.794260