Research Article
BibTex RIS Cite

İndüksiyonlu Bir Isıtma Sisteminin Güç Kalitesi Parametrelerine Etkisi

Year 2021, , 25 - 30, 31.01.2021
https://doi.org/10.31590/ejosat.795213

Abstract

Bu çalışma TI-6Al-4V bazlı malzemenin ısıl işlemi sırasında 900 kHz, 2.8 kW Ultra Yüksek Frekanslı İndüksiyon Isıtma Sisteminin (UHFIHS) Güç Kalitesi (PQ) parametrelerini belirlemek için yapılmıştır. Bu malzeme, endüstri uygulamalarında en önemli titanyum alaşımlarından biridir. İndüksiyon sisteminin tüm akım ve gerilim verileri, özel analog sensörlerle laboratuvar koşullarında toplanmış ve NI LabVIEWTM programı kullanılarak bilgisayara kaydedilmiştir. Toplanan veriler Ayrık Fourier Dönüşümü (DFT) ile analiz edilmiş ve cihazın çalışması sırasında güç kalitesi parametreleri üzerindeki etkisi incelenmiştir. DFT frekans spektrumu incelendiğinde, Periyot I ve Periyot II’de, 3. (150 Hz), 5. (250 Hz) ve 7. (350 Hz) harmonik bileşenlerin % 10'dan oldukça yüksek olduğu, diğerlerinin % 10'un altında olduğu görülmektedir. Periyot I, ısıtılacak numunenin 700 ° C sıcaklığa ulaşma sürecini ve periyot II, numunenin istenen sıcaklık seviyesine ulaşmasından sonraki süreci gösterir.

References

  • Arrillaga, J., Watson, N. R., & Chen, S. (2000). Power system quality assessment. Wiley.
  • Çavdar, U. (2014). Mechanical properties of hot forged ANSI 1050 steel. Materials Testing, 56(3), 208-212.
  • Gokozan, H., Tastan, M., Taskin, S., Cavdar, P. S., & Cavdar, U. (2016). Comparison of electrical energy consumption for different material processing procedures. Materials Testing, 58(11-12), 1009-1013.
  • Gökozan, H. (2011), Power quality monitoring and analysis of industrial factories and optimum harmonic filter selection. Dissertation, Sakarya University Pure and Applied Sciences.
  • Gökozan, H. (2019), Determination of Power Quality Parameters of a Three Phase Induction Motor Operated With Inverter, MAS International European Conference on Mathematics-Engineering-Natural&Medical Sciences-X, İzmir, Türkiye, pp 212-218
  • Gökozan, H., Taskin, S., Seker, S., & Ekiz, H. (2015). A neural network based approach to estimate of power system harmonics for an induction furnace under the different load conditions. Electrical Engineering, 97(2), 111-117. DOI: 10.1007/s00202-014-0320-3.
  • Granados-Lieberman, D., Romero-Troncoso, R. J., Osornio-Rios, R. A., Garcia-Perez, A., & Cabal-Yepez, E. (2011). Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review. IET Generation, Transmission & Distribution, 5(4), 519-529. DOI: 10.1049/iet-gtd.2010.0466
  • Karmaker, A. K., Roy, S., & Ahmed, M. R. (2019). Analysis of the Impact of Electric Vehicle Charging Station on Power Quality Issues. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-6). IEEE. DOI: 10.1109 / ECACE.2019.8679164
  • Khokhar, S., Zin, A. A. B. M., Mokhtar, A. S. B., & Pesaran, M. (2015). A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renewable and Sustainable Energy Reviews, 51,1650-1663. http://dx.doi.org/10.1016/j.rser.2015.07.068
  • Mahela, O. P., Shaik, A. G., & Gupta, N. (2015). A critical review of detection and classification of power quality events. Renewable and Sustainable Energy Reviews, 41, 495-505. http://dx.doi.org/10.1016/j.rser.2014.08.070
  • Montoya, F. G., García-Cruz, A., Montoya, M. G., & Manzano-Agugliaro, F. (2016). Power quality techniques research worldwide: A review. Renewable and Sustainable Energy Reviews, 54, 846-856.
  • Sallam, A. A., & Malik, O. P. (2019). Electric Power Quality. DOI: 10.1002 / 9781119509332.ch11.
  • Taskin, S., & Gokozan, H. (2011). Determination of the Spectral Properties and Harmonic Levels for Driving an Induction Motor by an Inverter Driver under the Different Load Conditions. Elektronika ir Elektrotechnika, 108 (2), 75–80. http://dx.doi.org/10.5755/j01.eee.108.2.149.
  • Taştan, M. (2019). Adaptive Notch Filter Bank Based Power Quality Analysis of an Ultra-High Frequency Induction Heating System. Balkan Journal of Electrical and Computer Engineering, 7(2), 131-136.
  • Taştan, M., Gökozan, H., Taşkin, S., & Çavdar, U. (2015). Comparative energy consumption analyses of an ultra high frequency induction heating system for material processing applications. Revista de metalurgia, 51(3), e046. doi: http://dx.doi.org/10.3989/revmetalm.046
  • Vatansever, F., & Kuyu, Y. C., (2019) the harmonic elimination in inverters with metaheuristic approaches. Uludağ University Journal of the Faculty of Engineering, 24(3), 383-396.
  • Yumusak N., Temurtas F., Gunturkun R. (2004) Harmonic Detection Using Neural Networks with Conjugate Gradient Algorithm. In: Bussler C., Fensel D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2004. Lecture Notes in Computer Science, vol 3192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30106-6_31

The Effect of an Induction Heating System on Power Quality Parameters

Year 2021, , 25 - 30, 31.01.2021
https://doi.org/10.31590/ejosat.795213

Abstract

This study was conducted to determine the Power Quality (PQ) parameters of 900 kHz, 2.8 kW Ultra High Frequency Induction Heating System (UHFIHS) during heat treatment of TI-6Al-4V based material. The material is one of the most important titanium alloys in the industry applications. All current and voltage data of the induction system are collected under laboratory conditions with special analog sensors and recorded to the computer by using NI LabVIEWTM program. The collected data are analyzed by Discrete Fourier Transform (DFT) and the effect of the device on power quality parameters during operation was examined. When the DFT frequency spectrum is analyzed, it is seen that the 3rd (150 Hz), 5th (250 Hz), and 7th (350 Hz) harmonic components are quite higher than 10 %, while the others are below 10 % in the Period I and Period II. Period I indicates the time until the sample to be heated reaches a temperature of 700 ° C and period II indicates the time after the sample has reached the desired temperature level.

References

  • Arrillaga, J., Watson, N. R., & Chen, S. (2000). Power system quality assessment. Wiley.
  • Çavdar, U. (2014). Mechanical properties of hot forged ANSI 1050 steel. Materials Testing, 56(3), 208-212.
  • Gokozan, H., Tastan, M., Taskin, S., Cavdar, P. S., & Cavdar, U. (2016). Comparison of electrical energy consumption for different material processing procedures. Materials Testing, 58(11-12), 1009-1013.
  • Gökozan, H. (2011), Power quality monitoring and analysis of industrial factories and optimum harmonic filter selection. Dissertation, Sakarya University Pure and Applied Sciences.
  • Gökozan, H. (2019), Determination of Power Quality Parameters of a Three Phase Induction Motor Operated With Inverter, MAS International European Conference on Mathematics-Engineering-Natural&Medical Sciences-X, İzmir, Türkiye, pp 212-218
  • Gökozan, H., Taskin, S., Seker, S., & Ekiz, H. (2015). A neural network based approach to estimate of power system harmonics for an induction furnace under the different load conditions. Electrical Engineering, 97(2), 111-117. DOI: 10.1007/s00202-014-0320-3.
  • Granados-Lieberman, D., Romero-Troncoso, R. J., Osornio-Rios, R. A., Garcia-Perez, A., & Cabal-Yepez, E. (2011). Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review. IET Generation, Transmission & Distribution, 5(4), 519-529. DOI: 10.1049/iet-gtd.2010.0466
  • Karmaker, A. K., Roy, S., & Ahmed, M. R. (2019). Analysis of the Impact of Electric Vehicle Charging Station on Power Quality Issues. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-6). IEEE. DOI: 10.1109 / ECACE.2019.8679164
  • Khokhar, S., Zin, A. A. B. M., Mokhtar, A. S. B., & Pesaran, M. (2015). A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renewable and Sustainable Energy Reviews, 51,1650-1663. http://dx.doi.org/10.1016/j.rser.2015.07.068
  • Mahela, O. P., Shaik, A. G., & Gupta, N. (2015). A critical review of detection and classification of power quality events. Renewable and Sustainable Energy Reviews, 41, 495-505. http://dx.doi.org/10.1016/j.rser.2014.08.070
  • Montoya, F. G., García-Cruz, A., Montoya, M. G., & Manzano-Agugliaro, F. (2016). Power quality techniques research worldwide: A review. Renewable and Sustainable Energy Reviews, 54, 846-856.
  • Sallam, A. A., & Malik, O. P. (2019). Electric Power Quality. DOI: 10.1002 / 9781119509332.ch11.
  • Taskin, S., & Gokozan, H. (2011). Determination of the Spectral Properties and Harmonic Levels for Driving an Induction Motor by an Inverter Driver under the Different Load Conditions. Elektronika ir Elektrotechnika, 108 (2), 75–80. http://dx.doi.org/10.5755/j01.eee.108.2.149.
  • Taştan, M. (2019). Adaptive Notch Filter Bank Based Power Quality Analysis of an Ultra-High Frequency Induction Heating System. Balkan Journal of Electrical and Computer Engineering, 7(2), 131-136.
  • Taştan, M., Gökozan, H., Taşkin, S., & Çavdar, U. (2015). Comparative energy consumption analyses of an ultra high frequency induction heating system for material processing applications. Revista de metalurgia, 51(3), e046. doi: http://dx.doi.org/10.3989/revmetalm.046
  • Vatansever, F., & Kuyu, Y. C., (2019) the harmonic elimination in inverters with metaheuristic approaches. Uludağ University Journal of the Faculty of Engineering, 24(3), 383-396.
  • Yumusak N., Temurtas F., Gunturkun R. (2004) Harmonic Detection Using Neural Networks with Conjugate Gradient Algorithm. In: Bussler C., Fensel D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2004. Lecture Notes in Computer Science, vol 3192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30106-6_31
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hayrettin Gökozan 0000-0002-8917-4001

Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Gökozan, H. (2021). The Effect of an Induction Heating System on Power Quality Parameters. Avrupa Bilim Ve Teknoloji Dergisi(21), 25-30. https://doi.org/10.31590/ejosat.795213