Research Article
BibTex RIS Cite

Kapasitif Enkoderler için Sağlam bir Algılayıcı Mekaniği

Year 2020, , 47 - 53, 05.10.2020
https://doi.org/10.31590/ejosat.801957

Abstract

Kapasitif enkoder teknolojisi manyetik ve optik enkoder teknolojilerine kıyasla daha güncel ve günümüzde halen geliştirilmekte olan bir açısal pozisyon algılayıcı teknolojisidir. Çeşitli özelliklerde ve farklı bileşenlere sahip kapasitif enkoderler bulunmaktadır. Yenilikçi ve yüksek performanslı kapasitif bir enkoderin geliştirilebilmesi için mevcut kapasitif enkoderlerin ayrıntılı bir şekilde irdenlenmesi ve sınıflandırılması gerektiğinden bu çalışmada genel bir kapasitif enkoder mimarisi tanımlanarak kapasitif enkoderler için detaylı bir sınıflandırma verilmiştir. Sunulan mimari; sinyal işleme ön devresi, algılayıcı mekaniği ve sinyal işleme son devresinden oluşmaktadır. Sinyal işleme ön devresi kapasitif enkoderin tetikleme sinyal devresini, sinyal işleme son devresi kapasitif enkoderin demodülasyon devresini içermektedir. Burada sağlam bir algılayıcı mekaniğin belirlenebilmesi için kapasitif enkoderler detaylı bir şekilde sınıflandırılmıştır. Sınıflandırma işlemi kapasitif enkoderlerin plaka sayılarına, plakalar üzerine yerleştirilen elektrot dizilişlerine ve rotor plakaların malzemelerine göre yapılmıştır. Sınıflandırma sonucunda sağlam bir algılayıcı mekaniğine karar verilmiştir. Algılayıcı mekaniğindeki bileşenler çeşitli analizlerle belirlenip bilgisayar destekli tasarım programlarıyla tasarlanmıştır. Tasarlanan mekanik bileşenler üretildikten sonra sunulan algılayıcı mekaniği kurulmuştur. Kurulan algılayıcı mekaniği için de bir ön tasarım süreci işletilmiştir. Algılayıcı mekaniği kurulduktan sonra uygun fiyatlı bir test düzeneğinde test edilmiştir. Bu çalışmayla, geliştirilmekte olan yenilikçi ve yüksek performanslı kapasitif enkodere sağlam bir algılayıcı mekaniği kazandırılmıştır.

Thanks

Bu çalışma “Yenilikçi ve Yüksek Performanslı Kapasitif Rotary Enkoder Geliştirilmesi” başlıklı NEÜ BAP birimi tarafından 191419007 proje numarasıyla, TÜBİTAK tarafından 2211-C kapsamında 1649B031907024 burs başvuru numarasıyla desteklenen doktora çalışmasından bir bölümün derlenip detaylandırılmasıyla hazırlanmıştır.

References

  • Krklješ, D., Vasiljević, D., & Stojanović, G. (2014). A capacitive angular sensor with flexible digitated electrodes. Sensor Review.
  • Karali, M., Karasahin, A. T., Keles, O., Kocak, M., & Erismis, M. A. (2018). A new capacitive rotary encoder based on analog synchronous demodulation. Electrical Engineering, 100(3), 1975-1983.
  • Fu, Y., Fan, W., Jin, H., & Chen, Q. (2020). A new capacitance angle sensor of concentric ring multi-layer differential. Measurement, 158, 107625.
  • Wolffenbuttel, R. F., & Van Kampen, R. P. (1991). An integrable capacitive angular displacement sensor with improved linearity. Sensors and Actuators A: Physical, 27(1-3), 835-843.
  • Mohammed, E. B., & Rehman, M. (2003). Digital capacitive angular-position sensor. IEE Proceedings-Science, Measurement and Technology, 150(1), 15-18.
  • Zangl, H., & Bretterklieber, T. (2004, October). Rotor design for capacitive sensors. In SENSORS, 2004 IEEE (pp. 520-523). IEEE.
  • Zheng, D., Zhang, S., Wang, S., Hu, C., & Zhao, X. (2014). A capacitive rotary encoder based on quadrature modulation and demodulation. IEEE Transactions on Instrumentation and Measurement, 64(1), 143-153.
  • Kimura, F., Gondo, M., Yamamoto, A., & Higuchi, T. (2009, November). Resolver compatible capacitive rotary position sensor. In Industrial Electronics, 2009. IECON'09. 35th Annual Conference of IEEE (pp. 1923-1928). IEEE.
  • Das, S., Sarkar, T. S., & Chakraborty, B. (2018). Simple approach to design a capacitive rotary encoder. IET Science, Measurement & Technology, 12(4), 500-506.
  • Brasseur, G. (2003). Design rules for robust capacitive sensors. IEEE Transactions on Instrumentation and Measurement, 52(4), 1261-1265.
  • Zheng, D., Zhang, S., Zhang, Y., & Fan, C. (2012, July). Application of CORDIC in capacitive rotary encoder signal demodulation. In 2012 8th IEEE International Symposium on Instrumentation and Control Technology (ISICT) Proceedings (pp. 61-65). IEEE.
  • Netzer, Y., 2002, U.S. Patent No. 6,492,911. Washington, DC: U.S. Patent and Trademark Office.
  • Netzer, Y. Rotary Electric Encoder Technology, tech. rep., Netzer Precision Motion Sensors Ltd., Israel.
  • Ferrari, V., Ghisla, A., Marioli, D., and Taroni, A., 2006, Capacitive angular-position sensor with electrically floating conductive rotor and measurement redundancy. IEEE transactions on instrumentation and measurement, 55(2), 514-520.
  • Yavsan, E., Karali, M., Gokce, B., & Erismis, M. A. (2020, June). The Effect of Rotor Plates on Capacitive Measurement in Capacitive Encoders. In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-4). IEEE.

A Robust Sensor Mechanics for Capacitive Encoders

Year 2020, , 47 - 53, 05.10.2020
https://doi.org/10.31590/ejosat.801957

Abstract

Capacitive encoder technology is an angular position sensing technology that is more current and still being developed today compared to magnetic and optical encoder technologies. Capacitive encoder technologies with various properties and different components are available. Existing capacitive encoders in the literature need to be classified extensively to develop an innovative and high performance capacitive encoder. In this study, a general capacitive encoder architecture was defined and capacitive encoders were classified in detail. The presented capacitive encoder architecture consists of the signal processing front-end circuit and sensor mechanics of the capacitive encoder. The signal processing front circuit contains the excitation signal circuit of the capacitive encoder and the signal processing end circuit includes the demodulation circuit of the capacitive encoder. In this study, capacitive encoders were classified in detail in order to achieve a robust sensor mechanics. The classification process was carried out according to the number of plates of capacitive encoders, the electrode arrays placed on the plates and the materials of the rotor plates. A robust sensor mechanics was decided by the classification process. After reaching the sensor mechanical components through various analyzes, these components were designed using computer-aided design programs. After the designed mechanical components were produced, a robust sensor mechanics was established. A preliminary design process was also used for the proposed robust sensor mechanics. The designed sensor mechanics was tested in a low-priced test setup after the realization. As a result of this study, a robust sensor mechanics has been provided to the innovative and high performance capacitive encoder under development.

References

  • Krklješ, D., Vasiljević, D., & Stojanović, G. (2014). A capacitive angular sensor with flexible digitated electrodes. Sensor Review.
  • Karali, M., Karasahin, A. T., Keles, O., Kocak, M., & Erismis, M. A. (2018). A new capacitive rotary encoder based on analog synchronous demodulation. Electrical Engineering, 100(3), 1975-1983.
  • Fu, Y., Fan, W., Jin, H., & Chen, Q. (2020). A new capacitance angle sensor of concentric ring multi-layer differential. Measurement, 158, 107625.
  • Wolffenbuttel, R. F., & Van Kampen, R. P. (1991). An integrable capacitive angular displacement sensor with improved linearity. Sensors and Actuators A: Physical, 27(1-3), 835-843.
  • Mohammed, E. B., & Rehman, M. (2003). Digital capacitive angular-position sensor. IEE Proceedings-Science, Measurement and Technology, 150(1), 15-18.
  • Zangl, H., & Bretterklieber, T. (2004, October). Rotor design for capacitive sensors. In SENSORS, 2004 IEEE (pp. 520-523). IEEE.
  • Zheng, D., Zhang, S., Wang, S., Hu, C., & Zhao, X. (2014). A capacitive rotary encoder based on quadrature modulation and demodulation. IEEE Transactions on Instrumentation and Measurement, 64(1), 143-153.
  • Kimura, F., Gondo, M., Yamamoto, A., & Higuchi, T. (2009, November). Resolver compatible capacitive rotary position sensor. In Industrial Electronics, 2009. IECON'09. 35th Annual Conference of IEEE (pp. 1923-1928). IEEE.
  • Das, S., Sarkar, T. S., & Chakraborty, B. (2018). Simple approach to design a capacitive rotary encoder. IET Science, Measurement & Technology, 12(4), 500-506.
  • Brasseur, G. (2003). Design rules for robust capacitive sensors. IEEE Transactions on Instrumentation and Measurement, 52(4), 1261-1265.
  • Zheng, D., Zhang, S., Zhang, Y., & Fan, C. (2012, July). Application of CORDIC in capacitive rotary encoder signal demodulation. In 2012 8th IEEE International Symposium on Instrumentation and Control Technology (ISICT) Proceedings (pp. 61-65). IEEE.
  • Netzer, Y., 2002, U.S. Patent No. 6,492,911. Washington, DC: U.S. Patent and Trademark Office.
  • Netzer, Y. Rotary Electric Encoder Technology, tech. rep., Netzer Precision Motion Sensors Ltd., Israel.
  • Ferrari, V., Ghisla, A., Marioli, D., and Taroni, A., 2006, Capacitive angular-position sensor with electrically floating conductive rotor and measurement redundancy. IEEE transactions on instrumentation and measurement, 55(2), 514-520.
  • Yavsan, E., Karali, M., Gokce, B., & Erismis, M. A. (2020, June). The Effect of Rotor Plates on Capacitive Measurement in Capacitive Encoders. In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-4). IEEE.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emrehan Yavşan 0000-0001-9521-4500

Muhammet Kara 0000-0002-0353-1902

Mehmet Karalı This is me 0000-0002-2380-0575

Mehmet Akif Erişmiş This is me 0000-0001-6837-2087

Publication Date October 5, 2020
Published in Issue Year 2020

Cite

APA Yavşan, E., Kara, M., Karalı, M., Erişmiş, M. A. (2020). Kapasitif Enkoderler için Sağlam bir Algılayıcı Mekaniği. Avrupa Bilim Ve Teknoloji Dergisi47-53. https://doi.org/10.31590/ejosat.801957