Research Article
BibTex RIS Cite

Farklı Nesnelere Göre Navigasyon Yolunun Revizyonu

Year 2020, , 273 - 278, 05.10.2020
https://doi.org/10.31590/ejosat.803825

Abstract

Bu çalışma bir mobil robot navigasyonu ile ilgilidir. Mobil robotları hareket ettirmek için navigasyon algoritmalarına ihtiyaç duyulur. Bu algoritmalar sayesinde robotların belirlenen başlangıç noktasından hedef noktasına hareketi sağlanır. Bununla birlikte, robot navigasyonu sırasında engellerden kaçınma iyi bir navigasyon algoritmasının ihtiyaç duyduğu gereksinimlerden birisidir. Engellerden kaçınma için bilinen bir haritadaki engeller göz önüne alınarak navigasyon yolu oluşturulur. Bir diğer yöntem ise navigasyon sırasında aktif bir şekilde tarama yapılarak engellerin olmadığı yolların tercih edilmesidir. Öte yandan klasik engel belirleme veya engelden kaçınma algoritmaları nesnelerin canlı veya cansız olmasını göz ardı eder. Böylece bütün engeller aynı görülür ve robot bu engellerden kaçınarak yolunu takip eder. Günümüz yaşantısında robotların insanların olduğu ortamlarda kullanımı giderek yaygınlaşmaktadır. Robotlar insanların olduğu ortamlarda da kendilerine atanan görevleri icra etmelidir. Öte yandan insanlara klasik bir engel gibi davranılması mevcut navigasyon algoritmalarının en önemli eksikliklerinden birisidir. Bu tip bir durumda insanların robotların varlığından rahatsız olabilmektedir. Bu sebeple, klasik navigasyon algoritmalarında karşılaşılan engelden kaçınma algoritmaları insanlara yaklaşım mesafesini baz alarak revize edilmesi daha iyi bir navigasyon şeması oluşturacaktır. Bu kapsamda bu çalışma içerisinde insan ve diğer nesneler arası bir ayrım yapılmıştır. Robot, insanlara proxemics teorisini baz alacak şekilde bir sosyal mesafe koyarak navigasyon yollarını güncellemektedir. Böylece insanların ihtiyaç duyduğu sosyal mesafe sağlanarak insanları daha konforlu hissettirecek bir navigasyon oluşturabilmiştir.

References

  • Yiping, Z., Jian, G., Ruilei, Z., & Qingwei, C. (2014, May). A SRT-based path planning Algorithm in unknown complex environment. In The 26th Chinese Control and Decision Conference (2014 CCDC) (pp. 3857-3862). IEEE.
  • Nie, Z., & Zhao, H. (2019, November). Research on Robot Path Planning Based on Dijkstra and Ant Colony Optimization. In 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (pp. 222-226). IEEE.
  • Mateus, A., Ribeiro, D., Miraldo, P., & Nascimento, J. C. (2019). Efficient and robust pedestrian detection using deep learning for human-aware navigation. Robotics and Autonomous Systems, 113, 23-37.
  • Xia, F., Tyoan, L., Yang, Z., Uzoije, I., Zhang, G., & Vela, P. A. (2015, April). Human-aware mobile robot exploration and motion planner. In SoutheastCon 2015 (pp. 1-4). IEEE.
  • Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. (2013). Human-aware robot navigation: A survey. Robotics and Autonomous Systems, 61(12), 1726-1743.
  • Truong, X. T., & Ngo, T. D. (2017). Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model. IEEE Transactions on Automation Science and Engineering, 14(4), 1743-1760.
  • Che, Y., Okamura, A. M., & Sadigh, D. (2020). Efficient and Trustworthy Social Navigation via Explicit and Implicit Robot–Human Communication. IEEE Transactions on Robotics, 36(3), 692-707.
  • Charalampous, K., Kostavelis, I., & Gasteratos, A. (2017). Recent trends in social aware robot navigation: A survey. Robotics and Autonomous Systems, 93, 85-104.
  • Hall, E. T. (1966). The hidden dimension (Vol. 609). Garden City, NY: Doubleday.
  • Lynch, K. M., & Park, F. C. (2017). Modern Robotics. Cambridge University Press.
  • Korkmaz, M., & Durdu, A. (2018, February). Comparison of optimal path planning algorithms. In 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) (pp. 255-258). IEEE.
  • Kavraki, L. E., Kolountzakis, M. N., & Latombe, J. C. (1998). Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation, 14(1), 166-171.

A Revision of the Navigation Path Based on Different Objects

Year 2020, , 273 - 278, 05.10.2020
https://doi.org/10.31590/ejosat.803825

Abstract

This study is about a mobile robot navigation. Navigation algorithms are needed to move mobile robots. Thanks to these algorithms, the navigation of robots from the specified starting point to the target point is provided. However, avoiding obstacles while navigating the robot is one of the requirements that a standard navigation algorithm need. For obstacle avoidance, a navigation path is created by taking into account the obstacles on a known map. Another method is to actively scan during navigation and choose the paths without obstacles. On the other hand, classical obstacle detection or obstacle avoidance algorithms ignore whether objects are human or non-living. Thus, all obstacles are seen the same and the robot follows its path by avoiding these obstacles. On the other hand, treating people as a classic obstacle is one of the most important shortcomings of current navigation algorithms. In such a situation, people may be disturbed by the presence of robots. Especially after a Covid-19 pandemic, people need more space even between other humans. For this reason, obstacle avoidance algorithms encountered in classical navigation algorithms should be revised based on the presence of people so that a better navigation scheme will be created. In this context, a distinction is made between humans and other objects in this study. The robot updates the navigation paths by taking into account a social distance to people based on the proxemics theory. Thus, by providing the social distance people need, it has been able to create a navigation that will make people feel more comfortable.

References

  • Yiping, Z., Jian, G., Ruilei, Z., & Qingwei, C. (2014, May). A SRT-based path planning Algorithm in unknown complex environment. In The 26th Chinese Control and Decision Conference (2014 CCDC) (pp. 3857-3862). IEEE.
  • Nie, Z., & Zhao, H. (2019, November). Research on Robot Path Planning Based on Dijkstra and Ant Colony Optimization. In 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (pp. 222-226). IEEE.
  • Mateus, A., Ribeiro, D., Miraldo, P., & Nascimento, J. C. (2019). Efficient and robust pedestrian detection using deep learning for human-aware navigation. Robotics and Autonomous Systems, 113, 23-37.
  • Xia, F., Tyoan, L., Yang, Z., Uzoije, I., Zhang, G., & Vela, P. A. (2015, April). Human-aware mobile robot exploration and motion planner. In SoutheastCon 2015 (pp. 1-4). IEEE.
  • Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. (2013). Human-aware robot navigation: A survey. Robotics and Autonomous Systems, 61(12), 1726-1743.
  • Truong, X. T., & Ngo, T. D. (2017). Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model. IEEE Transactions on Automation Science and Engineering, 14(4), 1743-1760.
  • Che, Y., Okamura, A. M., & Sadigh, D. (2020). Efficient and Trustworthy Social Navigation via Explicit and Implicit Robot–Human Communication. IEEE Transactions on Robotics, 36(3), 692-707.
  • Charalampous, K., Kostavelis, I., & Gasteratos, A. (2017). Recent trends in social aware robot navigation: A survey. Robotics and Autonomous Systems, 93, 85-104.
  • Hall, E. T. (1966). The hidden dimension (Vol. 609). Garden City, NY: Doubleday.
  • Lynch, K. M., & Park, F. C. (2017). Modern Robotics. Cambridge University Press.
  • Korkmaz, M., & Durdu, A. (2018, February). Comparison of optimal path planning algorithms. In 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) (pp. 255-258). IEEE.
  • Kavraki, L. E., Kolountzakis, M. N., & Latombe, J. C. (1998). Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation, 14(1), 166-171.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Korkmaz 0000-0002-1462-8005

Publication Date October 5, 2020
Published in Issue Year 2020

Cite

APA Korkmaz, M. (2020). A Revision of the Navigation Path Based on Different Objects. Avrupa Bilim Ve Teknoloji Dergisi273-278. https://doi.org/10.31590/ejosat.803825