Research Article
BibTex RIS Cite

Factors Affecting Sheet Metal Production with Cellular Production System and Manufacturing Time Modeling in Automotive Industry

Year 2021, , 247 - 260, 31.01.2021
https://doi.org/10.31590/ejosat.818089

Abstract

In this study, the stamping process and cycle times were analyzed in a stamping workshop that produces sheet metal parts in an automotive company. In this study that each press line has been considered as a production cell, factors affecting the production time were investigated and an analytical model has been developed that takes production criteria into account. As a result of the study, the factors about cycle period constitute the total production cost. These factors can be summarized as costs of product storage area, raw material, reject parts, production labor, reach the production speed and die change. As a result of the Cellular Production modeling, analysis and processing of the obtained data, it has been determined that the most important factors affecting the Total Cycle period is the die change time, the amount of reject parts, raw material, product storage and product container investment cost. It was observed that the ratio of die change times to total time decreased as a quadratic polynomial function, while the storage areas and product container investment cost increased linearly. In this study, the cycle period applied as 10 days with the procedural approach decreased to 40% after the study and was calculated to be 6 days as the optimum period.

References

  • A. R. Yelles-Chaouche, E. Gurevsky, N. Brahimi, and A. Dolgui, Reconfigurable Manufacturing Systems from an Optimisation Perspective: A Focused Review of Literature, Int. J. Prod. Res. 0, 1 (2020).
  • C. H. Glock and E. H. Grosse, The Impact of Controllable Production Rates on the Performance of Inventory Systems: A Systematic Review of the Literature, Eur. J. Oper. Res. 288, 703 (2020).
  • F. E. K. Sato and T. Nakata, Energy Consumption Analysis for Vehicle Production through a Material Flow Approach, Energies 13, (2020).
  • H. Rasay and A. M. Golmohammadi, Modeling and Analyzing Incremental Quantity Discounts in Transportation Costs for a Joint Economic Lot Sizing Problem, Iran. J. Manag. Stud. 13, 23 (2020).
  • M. Kitazawa, S. Takahashi, T. B. Takahashi, A. Yoshikawa, and T. Terano, Improving a Cellular Manufacturing System through Real Time-Simulation and-Measurement, Proc. - Int. Comput. Softw. Appl. Conf. 2, 117 (2016).
  • K. V. Durga Rajesh, M. Mani Krishna, M. A. Ali, and P. V. Chalapathi, A Modified Hybrid Similarity Coefficient Based Method for Solving the Cell Formation Problem in Cellular Manufacturing System, Mater. Today Proc. 4, 1469 (2017).
  • B. A. Norman and K. L. Needy, International Journal of Worker Assignment in Cellular Manufacturing Considering Technical and Human Skills, 37 (2010).
  • Ö. F. Yılmaz, Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. 6, 644 (2018).
  • Ö. F. Yılmaz, E. Çevikcan, and M. B. Durmuşoglu, Scheduling Batches in Multi Hybrid Cell Manufacturing System Considering Worker Resources: A Case Study from Pipeline Industry, Adv. Prod. Eng. Manag. 11, 192 (2016).
  • Y. Can, A Modelling About the Optimisation of the Production Cycle Period and the Stamp Line Loading with the Approach of the Cell Production System, Osmangazi University, 1999.
  • R. G. Askin, Contributions to the Design and Analysis of Cellular Manufacturing Systems, Int. J. Prod. Res. 51, 6778 (2013).
  • R. G. Askin and S. Estrada, Investigation of Cellular Manufacturing Practices, in Handbook of Cellular Manufacturing Systems (2007), pp. 25–34.

Otomotiv Sanayinde Hücresel Üretim Sisteminde Sac Parça Üretim Periyoduna Etki Eden Faktörler ve Üretim Zamanı Modellemesi

Year 2021, , 247 - 260, 31.01.2021
https://doi.org/10.31590/ejosat.818089

Abstract

Bu çalışmada Oyak Renault otomotiv firmasında sac parça üreten pres atölyesinde hücresel üretim modellemesi ve buna bağlı olarak optimum çevrim periyodu analizleri yapılmıştır. Pres hattının üretim hücresi kabul edildiği bu çalışmada, toplam üretim zamanına etki eden faktörler incelenmiş ve üretim kriterlerini dikkate alan bir analitik model geliştirilmiştir. Çalışma neticesinde, çevrim periyoduna bağlı faktörlerden kalıp değişim, taşıma kabı yatırım, ürün stok alanı, hammadde, ayar parça ıskarta, üretim işçilik ve üretim hızına erişim maliyetleri toplam üretim maliyetini oluşturmaktadır. Modelleme, analiz ve toplanan verilerin işlenmesi sonucunda Toplam Çevrim periyoduna tesir eden en önemli faktörün kalıp değişim süresi, parça ıskarta miktarı, ham madde ve mamul stokları ile taşıma kabı yatırım maliyeti olduğu belirlenmiştir. Kalıp değişim zamanlarının toplam zamana oranının 2. dereceden polinom fonksiyonu şeklinde azaldığı, stok alanları ve taşıma kabı yatırım maliyetinin ise lineer olarak arttığı görülmüştür. Yapılan bu çalışmada yordamsal yaklaşımla 10 gün olarak uygulanan çevrim periyodu, çalışma sonrasında %40 azalarak optimum 6 gün olarak hesaplanmıştır.

References

  • A. R. Yelles-Chaouche, E. Gurevsky, N. Brahimi, and A. Dolgui, Reconfigurable Manufacturing Systems from an Optimisation Perspective: A Focused Review of Literature, Int. J. Prod. Res. 0, 1 (2020).
  • C. H. Glock and E. H. Grosse, The Impact of Controllable Production Rates on the Performance of Inventory Systems: A Systematic Review of the Literature, Eur. J. Oper. Res. 288, 703 (2020).
  • F. E. K. Sato and T. Nakata, Energy Consumption Analysis for Vehicle Production through a Material Flow Approach, Energies 13, (2020).
  • H. Rasay and A. M. Golmohammadi, Modeling and Analyzing Incremental Quantity Discounts in Transportation Costs for a Joint Economic Lot Sizing Problem, Iran. J. Manag. Stud. 13, 23 (2020).
  • M. Kitazawa, S. Takahashi, T. B. Takahashi, A. Yoshikawa, and T. Terano, Improving a Cellular Manufacturing System through Real Time-Simulation and-Measurement, Proc. - Int. Comput. Softw. Appl. Conf. 2, 117 (2016).
  • K. V. Durga Rajesh, M. Mani Krishna, M. A. Ali, and P. V. Chalapathi, A Modified Hybrid Similarity Coefficient Based Method for Solving the Cell Formation Problem in Cellular Manufacturing System, Mater. Today Proc. 4, 1469 (2017).
  • B. A. Norman and K. L. Needy, International Journal of Worker Assignment in Cellular Manufacturing Considering Technical and Human Skills, 37 (2010).
  • Ö. F. Yılmaz, Sanal Hücresel Üretim Sistemi İçin Üretim Kontrol Sisteminin Belirlenmesi, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. 6, 644 (2018).
  • Ö. F. Yılmaz, E. Çevikcan, and M. B. Durmuşoglu, Scheduling Batches in Multi Hybrid Cell Manufacturing System Considering Worker Resources: A Case Study from Pipeline Industry, Adv. Prod. Eng. Manag. 11, 192 (2016).
  • Y. Can, A Modelling About the Optimisation of the Production Cycle Period and the Stamp Line Loading with the Approach of the Cell Production System, Osmangazi University, 1999.
  • R. G. Askin, Contributions to the Design and Analysis of Cellular Manufacturing Systems, Int. J. Prod. Res. 51, 6778 (2013).
  • R. G. Askin and S. Estrada, Investigation of Cellular Manufacturing Practices, in Handbook of Cellular Manufacturing Systems (2007), pp. 25–34.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yücel Can 0000-0003-2086-2129

Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Can, Y. (2021). Otomotiv Sanayinde Hücresel Üretim Sisteminde Sac Parça Üretim Periyoduna Etki Eden Faktörler ve Üretim Zamanı Modellemesi. Avrupa Bilim Ve Teknoloji Dergisi(21), 247-260. https://doi.org/10.31590/ejosat.818089