Research Article
BibTex RIS Cite

Tatvan, Ahlat ve Adilcevaz Bölgelerinde Sahil Kumlarında Radon Aktivite Konsantrasyon Seviyelerinin Belirlenmesi

Year 2021, , 90 - 94, 31.01.2021
https://doi.org/10.31590/ejosat.818568

Abstract

Radon gazı (222Rn), hem doğal radyoaktivitenin büyük çoğunluğunu teşkil etmesi hem de insan sağlığı açısından akciğer kanserinin ikinci en önemli sebebi olması nedeniyle doğal radyoaktivite çalışmalarında önemli bir parametredir. Bu çalışmada, Van Gölü kıyı şeridinde yer alan Tatvan, Ahlat ve Adilcevaz bölgelerinde sahil kumlarındaki radon gazı aktivite konsantrasyon seviyeleri belirlenmiştir. Nemrut ve Süphan sönmüş volkanlarının etkisiyle oluşan Van Gölünün sahil şeridinde önceden belirlenen 15 farklı noktadan sahil kumu örnekleri toplanmıştır. Toplanan örnekler kurutulup elendikten sonra CR-39 pasif katıhal iz detektörü (SSNTD – Solid State Nuclear Tracking Detector) ile birlikte bir kaba yerleştirilmiştir. 61 gün boyunca sahil kumlarından yayılan radon gazına maruz kalan detektörler çıkartılarak 4 buçuk saat boyunca 90°C'de 6,25 M NaOH çözeltisi içinde kimyasal kazıma işlemine tabi tutulmuştur. Kazınmış detektörlerde RadoSYS otomatik sayım sistemi kullanılarak radon gazına ait izler sayılmıştır. İz yoğunluğu cinsinden alınan sayım sonuçları kullanılarak radon konsantrasyon seviyeleri belirlenmiştir. En büyük ve en küçük konsantrasyon değerleri 459.42 ± 7.41 Bq.m-3 ve 105.34 ± 3.09 Bq.m-3 olarak sırasıyla ADCZ-6 ve TTVN-12 örnek noktalarında elde edilmiştir. Ortalama aktivite değeri ise 193,30 Bq.m-3 olarak belirlenmiştir. Bölgesel olarak değerlendirildiğinde en yüksek aktivite değeri Tatvan’da ortalama 240,96 Bq.m-3, sonrasında Ahlat’ta 209,57 Bq.m-3 ve en düşük olarak Adilcevaz’da 129,36 Bq.m-3 olarak belirlenmiştir. Elde edilen aktivite değerleri kullanılarak Kriging metoduyla kontur dağılım haritası elde edilmiştir. Ayrıca kum numuneleri için yıllık etkin doz değerleri belirlenmiştir. En büyük ve en küçük doz değerleri sırasıyla 11,57 mSv.y-1 ve 2,65 mSv.y-1 olarak bulunmuştur. Elde edilen sonuçlar, Türkiye ve dünyanın diğer ülkelerinde farklı bölgelerdeki sahil kumlarının radon gazı seviyeleri ve limit değerler ile mukayese edilmiştir.

Supporting Institution

Bitlis Eren Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

Proje No: BEBAP 2018.09

References

  • Durrani, S. A. and İliç, R., (1997). Radon Measurements by Etched Track Detectors: Applications in Radiation Protection. Earth Sciences and the Environment, World Scientific, New Jersey, U.S.A., 387p.
  • Evans, R. D. (1968). Engineers' Guide to The Elementary Behavior of Radon Daughters. Health Physics, Vol. 38, pp. 1173-1197. DOI: 10.1097/00004032-196908000-00006.
  • World Health Organisation (WHO) (2014). World Cancer Report. WHO Press.
  • Çelebi N., Ataksor B., Taskın H. and Albayrak Bingoldag N. (2015). Indoor radon measurements in Turkey dwellings. Radiation Protection Dosimetry, vol. 167, no. 4, pp. 626–632. doi:10.1093/rpd/ncu329.
  • Mihci M, Buyuksarac A, Aydemir A, Celebi N. (2010). Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting. Journal of Environmental Radioactivity, 101:952–957. https ://doi.org/10.1016/j.jenvr ad.2010.06.013.
  • Kuluöztürk M.F., Büyüksaraç A., Özbey F., Yalçin S. and Doğru M. (2018). Determination of indoor radon gas levels in some buildings constructed with Ahlat stone in Ahlat/Bitlis. International Journal of Environmental Science and Technology, Volume 16, Issue 9, pp 5033–5038. https://doi.org/10.1007/s13762-018-1692-0.
  • Kulalı F., Günay O. and Aközcan S. (2019). Determination of indoor radon levels at campuses of Üsküdar and Okan Universities. International Journal of Environmental Science and Technology (16) 5281–5284. https://doi.org/10.1007/s13762-019-02369-5.
  • Kulalı F., Akkurt I. and Özgür N. (2017). The Effect of Meteorological Parameters on Radon Concentration in Soil Gas. Acta Physica Polonica A, Vol. 132, No. 3-II, 999-1001. DOI: 10.12693/APhysPolA.132.999.
  • Yalım H.A., Sandıkcıoğlu A., Ertuğrul O. and Yıldız A. (2012). Determination of the relationship between radon anomalies and earthquakes in well waters on the Akşehir-Simav Fault System in Afyonkarahisar province, Turkey. Journal of Environmental Radioactivity, 110, 7-12. DOI:10.1016/j.jenvrad.2012.01.015.
  • Al-Fifi Z., El-Araby E.H., Elhaes H. (2012). Monitoring of Radon Concentrations in Jazan Beach Soil. Journal of Applied Sciences Research, 8(2): 823-827.
  • RadoSYS (2011). RadoSYS Radometer 2000 User Manual. Hungary.
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000). Sources and Effects of Ionizing Radiations. UN, New York.
  • TAEK (Turkish Atomic Energy Authority) (2000). Regulations for the radiation safety. Official Journal, Date/Number: 24.03.2000 / 23999.

Determination of Radon Activity Concentration Levels of Beach Sands in Tatvan, Ahlat and Adilcevaz Regions

Year 2021, , 90 - 94, 31.01.2021
https://doi.org/10.31590/ejosat.818568

Abstract

Radon gas (222Rn) is an important parameter in natural radioactivity studies because it constitutes the majority of natural radioactivity and is the second most important cause of lung cancer in terms of human health. In this study, radon gas activity concentration levels were determined in beach sands of Tatvan, Ahlat and Adilcevaz regions where are on the shore of Lake Van. Beach sand samples were collected from 15 predetermined points on the coastline of Lake Van, which was formed by the effect of Nemrut and Süphan extinct volcanoes. After the collected samples were dried and sieved, they were placed in a container with the CR-39 passive solid-state track detector (SSNTD - Solid State Nuclear Tracking Detector). The detectors exposed to the radon gas emitted from the beach sands for 61 days were removed and subjected to chemical etching at 90 ° C in 6.25 M NaOH solution for 4 and a half hours. Radon gas traces were counted on the etched detectors using the RadoSYS automatic counting system. Radon concentration levels were determined using the counting results in terms of trace density. The maximum and the minumum values were obtained as 459.42 ± 7.41 Bq.m-3 and 105.34 ± 3.09 Bq.m-3 in the ADCZ-6 sample and TTVN-12 sample, respectively. The average activity value was determined as 193.30 Bq.m-3. When evaluated regionally, the highest activity value was determined as an average of 240.96 Bq.m-3 in Tatvan, then 209.57 Bq.m-3 in Ahlat and 129.36 Bq.m-3 in Adilcevaz. Using the activity values obtained, the contour distribution map was obtained by the Kriging method. Furthermore, annual effective dose values were determined for sand samples. The largest and smallest dose values were found to be 11.57 mSv.y-1 and 2.65 mSv.y-1, respectively. The obtained results were compared with limit values and radon gas levels of beach sands in the other different areas of Turkey and other countries.

Project Number

Proje No: BEBAP 2018.09

References

  • Durrani, S. A. and İliç, R., (1997). Radon Measurements by Etched Track Detectors: Applications in Radiation Protection. Earth Sciences and the Environment, World Scientific, New Jersey, U.S.A., 387p.
  • Evans, R. D. (1968). Engineers' Guide to The Elementary Behavior of Radon Daughters. Health Physics, Vol. 38, pp. 1173-1197. DOI: 10.1097/00004032-196908000-00006.
  • World Health Organisation (WHO) (2014). World Cancer Report. WHO Press.
  • Çelebi N., Ataksor B., Taskın H. and Albayrak Bingoldag N. (2015). Indoor radon measurements in Turkey dwellings. Radiation Protection Dosimetry, vol. 167, no. 4, pp. 626–632. doi:10.1093/rpd/ncu329.
  • Mihci M, Buyuksarac A, Aydemir A, Celebi N. (2010). Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting. Journal of Environmental Radioactivity, 101:952–957. https ://doi.org/10.1016/j.jenvr ad.2010.06.013.
  • Kuluöztürk M.F., Büyüksaraç A., Özbey F., Yalçin S. and Doğru M. (2018). Determination of indoor radon gas levels in some buildings constructed with Ahlat stone in Ahlat/Bitlis. International Journal of Environmental Science and Technology, Volume 16, Issue 9, pp 5033–5038. https://doi.org/10.1007/s13762-018-1692-0.
  • Kulalı F., Günay O. and Aközcan S. (2019). Determination of indoor radon levels at campuses of Üsküdar and Okan Universities. International Journal of Environmental Science and Technology (16) 5281–5284. https://doi.org/10.1007/s13762-019-02369-5.
  • Kulalı F., Akkurt I. and Özgür N. (2017). The Effect of Meteorological Parameters on Radon Concentration in Soil Gas. Acta Physica Polonica A, Vol. 132, No. 3-II, 999-1001. DOI: 10.12693/APhysPolA.132.999.
  • Yalım H.A., Sandıkcıoğlu A., Ertuğrul O. and Yıldız A. (2012). Determination of the relationship between radon anomalies and earthquakes in well waters on the Akşehir-Simav Fault System in Afyonkarahisar province, Turkey. Journal of Environmental Radioactivity, 110, 7-12. DOI:10.1016/j.jenvrad.2012.01.015.
  • Al-Fifi Z., El-Araby E.H., Elhaes H. (2012). Monitoring of Radon Concentrations in Jazan Beach Soil. Journal of Applied Sciences Research, 8(2): 823-827.
  • RadoSYS (2011). RadoSYS Radometer 2000 User Manual. Hungary.
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000). Sources and Effects of Ionizing Radiations. UN, New York.
  • TAEK (Turkish Atomic Energy Authority) (2000). Regulations for the radiation safety. Official Journal, Date/Number: 24.03.2000 / 23999.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şule Karatepe 0000-0001-8125-2231

Muhammed Fatih Kuluöztürk 0000-0001-8581-2179

Mahmut Dogru 0000-0002-0015-0629

Project Number Proje No: BEBAP 2018.09
Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Karatepe, Ş., Kuluöztürk, M. F., & Dogru, M. (2021). Tatvan, Ahlat ve Adilcevaz Bölgelerinde Sahil Kumlarında Radon Aktivite Konsantrasyon Seviyelerinin Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(21), 90-94. https://doi.org/10.31590/ejosat.818568