Research Article
BibTex RIS Cite

Experimental Investigation of Flexural Behavior of Metal-Glass fiber/Epoxy/MWCNT

Year 2020, , 249 - 253, 30.11.2020
https://doi.org/10.31590/ejosat.822564

Abstract

In this study E-glass/Epoxy/MWCNT nanocomposites were produces by modifiying E-glass/epoxy composites with multi-walled carbon nanotubes (MWCNT). Metal/nanocomposite sandwich panels were obtained by bonding banocomposites with brass, copper and aluminum. The aim of study is to determine the bending strength values of sandwich panels in these three different design parameters experimentally. The nanocomposites forming the core part of the sandwich panels are reinforced with 330 g/m2 unidirectional E-glass fabrics. The resin that forms the matrix part of nanocomposites is a diglycidyl ether bisphenol A type epoxy. The purity of carbon nanotubes used as modification material is 98%, inner diameters of 5-10 nanometers, outer diameters of 10-20 nanometers and 0,5-2 micrometers. Carbon nanotubes functionalized as –OH were imported from Switzerland. Interfacial bonds between matrix an reinforcement elements are one of the most important points for a composite. The balanced transfer of the load from the matrix to the fibers increases some of the strength values of the composite. Carbon nanotubes are chemically bonded to epoxy resin with functional (-OH) groups and physically stuck to E-glass fibers acting as a bridge, increasing the quality of the interface. The ability of carbon nanotubes to fulfill these functions is directly related to their homogeneous mixing within the resin. After the resin hardener mixture is made 70-30%, the nanoparticles added at 0.5% by weight are mechanically 20 min. have been mixed for time. The mixture is applied to E-glass fabrics with a hand palette and then 30 min. to allow the resin to diffuse into the fabric thoroughly has been suspended. These wet fabrics were cured in four layers [0]4 with hot press molding at 100 °C and 7 bar pressure. Cured plates and brass, copper aluminum plates were sized with water jet to test sample dimensions (100x20). Brass, copper and aluminum forming the outer laminate of the sandwich panel and the nanocomposite material forming the core are bonded with methyl methacrylate with two components. Finally, the three-point bending tests of these sandwich panels are the most resistant to bending with 33 MPa, Aluminum-Glass fiber/Epoxy/MWCNT then 11 MPa, Copper-Glass fiber/Epoxy/MWCNT and 10 MPa were determined.

References

  • Dai, J. ve Hahn, T.H. (2003). Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding. Composite Structures, 61(3), 247-253.
  • Efe, M.O. (2019). Farklı destek mesafelerinde polivinil klorür (PVC) çekirdek yapılı sandviç kompozitlerin eğilme davranışlarının numerik analizi. Yüksek lisans tezi, Balıkkesir Üniversitesi, Balıkkesir.
  • Elamin, M., Li, B., Tan, K.T., (2018) Impact damage of composite sandwich structures in arctic condition. Composite Structures, 192, 422-433. Engin, M.R. ve Rizkalla, S.H. (2008). Material characteristics of 3-D FRP sandwich panels. Construction and Bulding Materials, 22, 1009-1018.
  • Eskizeybek, V. (2012). Yüzeylerine kimyasal olarak karbon nanotüpler bağlanmış örgü cam fiber/epoksi nanokompozitlerin üretimi ve tabakalar arası kırılma davranışlarının incelenmesi. Doktora tezi, Selçuk Üniversitesi, Konya,
  • Gao X., Gillespie J.W., Jensen, R.E., Li, V., Haque B.Z., McKnight S. M., (2015).Effect of fiber surface texture on the mechanical properties of glass fiber reinforced epoxy composite. Composites: Part A, 74, 10-17.
  • Harhasha, M., Gilbertb, R.R., Hartmannb, S., Heinz, P., (2020). Experimental characterization, analytical and numerical investigations of metal/polymer/metal sandwich composites – Part 2: Free bending. Composite Structures, 232, 1-15.
  • Hou, P., Zhao, a., Wu, W., Huan, H., Li, C., Wang, S., Zhao, H., (2018). Failure mechanism of glass-fiber reinforced laminates influenced by the copper film in three-point bending. International Journal of Adhesion and Adhesives, 84, 368-377.
  • Hussain, M., Khan, R., Abbas, N., (2019). Experimental and computational studies on honeycomb sandwich structures unde static and fatigue bending load. Composite Structures, Journal of King Saud University-Science, 31, 222-229.
  • Iyer, V.S., Chatterjee, R., Ramya, M., Suresh, E., Padmanabhan, K., (2017). A comparative study of the three point and four point bending behaviour of rigid foam core glass/epoxy face sheet sandwich composites. Materials Today: Proceedings 5(5), 12083-12090.
  • Krzyhak, A., Mazur, M., Gajewski, M., Drozd, K., Komorek, A., ve PrzybyBek, P., (2016). Sandwich structured composites for aeronautics: Methods of manufacturing affecting some mechanical properties. International Jour. of Aerospace Engineering, 1-10.
  • Mingze, M., Weixing, Y., Wen, J., Wei, J., Yan, C., Piao L., (2020). Fatigue behavior of composite sandwich paneles under three point bending load. Polymer Testing, 91, 1–8.
  • Mittal, G., Dhand, V., Rhee K.Y., Parkı, S., Lee, W.R., (2015). A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Indistrial and Engineering Chemistry, 21, 11-25.
  • Mortone, A., Formicola C., GiordanoM., Zarrelli M., (2010). Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposites. Composites Science and Technology, 70, 1154-1160.
  • Mostafa, A., Shankar, K., ve Morozov, E.V., (2014) Experimental, Theoretical and numerical investigation of the composite sandwich panels with PVC foam core. Applied Composite Materials, 21(4), 661-675.
  • Nayak B.A., Shubham., Prusty, R.K., Ray, B.C. (2020). Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. Materials Today: Proceedings, doi:0000000/000000000000
  • Qingyu, P., Yibin, L., Xiaodong, H., Hongzhen, L., Pingan. H., Yuanyuan. S., … Shanyi D., (2013) Interfacial enhancement of carbon fiber composites by poly (amido amine) functionalization. Composites Science and Technology, 74, 37-42
  • Shivamurthy, B., Anandhan, S., Bhat, K.U., Thimmappa, B,H,S, (2020). Structure-property reletionship of glass fabric/MWCNT/epoxy multi layered laminates. Composites Communications, 22, 1-8.
  • Sakly, A., Laksimi, A., Kebir, H., Benmedakhen, S. (2016) Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications. Engineering Failure Analysis, 68, 22-31.
  • Shin, D.K., Kim, H.C., Lee, J.J., (2014). Numerical analysis of the damage behavior of an aluminum/CFRP hybrid beam under three point bending. Composites: Part B, 56, 397-404.
  • Shin, K.C, Lee, J.J, Kim, K.H., Song, M.C., Huh, J.S. (2002). Axial crush and bending collapse of an aluminium/GFRP hybrid square tube and its energy absorption capability. Composite Structures, 57, 279-287.
  • Wei, X., Wua, Q., Gao, Y., Xionga J., (2020). Bending characteristics of all-composite hexagon honeycomb sandwich beams: experimental tests and a three-dimensional failure mechanism map. Mechanics of Materials, 148, 1-10.
  • Xiong, J., Ma, L., Stocchi, A., Yang, J., Wu, L., Pan, S., (2014) Bending response of carbon fiber composite sandwich beams with three dimensional honeycomb cores, Composite Structures 108, 234-242.

Metal-Cam fiber/Epoksi/ÇDKNT Sandviç Panellerin Eğilme Davranışlarının Deneysel Olarak Araştırılması

Year 2020, , 249 - 253, 30.11.2020
https://doi.org/10.31590/ejosat.822564

Abstract

Bu çalışmada E-cam/Epoksi kompozitler çoğul duvarlı karbon nanotüpler (ÇDKNT) ile modifiye edilerek E-cam/Epoksi/ÇDKNT nanokompozitler üretilmiştir. Nanokompozitler pirinç, bakır ve alüminyum ile yapıştırılarak metal/nanokompozit sandviç paneller elde edilmiştir. Çalışmanıın amacı sandviç panellerin bu üç farklı tasarım parametresinde eğilme dayanımı değerlerinin deneysel olarak tespit edilmesidir. Sandviç panellerin çekirdek kısmını oluşturan nanokompozitler 330 g/m2 ağırlığındaki tek eksenli (unidirectional) E-cam kumaşlar ile takviye edilmiştir. Nanokompozitlerin matris kısmını oluşturan reçine ise diglisidil ether bisfenol A türü bir epoksidir. Modifiye malzemesi olarak kullanılan karbon nanotüplerin saflıkları %98, iç çapları 5-10 nanometre dış çapları 10-20 nanometre ve 0,5-2 mikrometre aralığındadır. Karbon nanotüpler fonksiyonelleştirilmiş (-OH) olarak temin edilmiştir. Matris ve takviye elemanları arasındaki arayüzey bağları bir kompozit için en önemli noktalardan birtanesidir. Yükün matristen elyaflara dengeli aktarılması kompozitin bazı mukavemet değerlerini arttırmaktadır. Karbon nanotüpler fonksiyonel (-OH) guruplar ile kimyasal olarak epoksi reçineye bağlanmakta ve fiziksel olarak da E-cam elyaflara saplanarak bir köprü gibi işlev görerek arayüzey kalitesini arttırmaktadır. Karbon nanotüplerin bu işlevleri yerine getirebilmesi reçine içerisinde homojen karışmaları ile doğrudan ilişkilidir. Reçine sertleştirici karışımı %70-30 yapıldıktan sonra ağırlıkça %0,5 oranında ilave edilen nano partüküller mekanik olarak 20 dk. süre ile karıştırılmışlardır. Bu karışım bir el paleti ile E-cam kumaşlara uygulanmış ve sonrasında reçinenin kumaşa iyice difüze olması için 30 dk. bekletilmiştir. Bu ıslak haldeki kumaşlar dört tabakalı şekilde [0]4 sıcak pres kalıplama ile 100 °C sıcaklık ve 7 bar basınç altında kürleştirilmişlerdir. Kürleşen plakalar ve pirinç, bakır, alüminyum levhalar su jeti ile deney numunesi ölçülerinde (100x20mm) ebatlandırılmışlardır. Sandviç panelin dış laminatlarını oluşturan pirinç, bakır, ve alüminyum ile çekirdeği oluşturan nanokompozit malzeme çift komponentli metil metakrilat ile yapıştırılmıştır. Son olarak üç nokta eğme deneyleri yapılan bu sandviç panellerin bükülmeye karşı en dayanıklısı 19 MPa ile Alüminyum-Cam fiber/Epoksi/ÇDKNT, sonrasında 11 MPa, Bakır-Cam fiber/Epoksi/ÇDKNT son olarakda 10 MPa ile Pirinç-Cam fiber/Epoksi/ÇDKNT olarak tespit edilmiştir.

References

  • Dai, J. ve Hahn, T.H. (2003). Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding. Composite Structures, 61(3), 247-253.
  • Efe, M.O. (2019). Farklı destek mesafelerinde polivinil klorür (PVC) çekirdek yapılı sandviç kompozitlerin eğilme davranışlarının numerik analizi. Yüksek lisans tezi, Balıkkesir Üniversitesi, Balıkkesir.
  • Elamin, M., Li, B., Tan, K.T., (2018) Impact damage of composite sandwich structures in arctic condition. Composite Structures, 192, 422-433. Engin, M.R. ve Rizkalla, S.H. (2008). Material characteristics of 3-D FRP sandwich panels. Construction and Bulding Materials, 22, 1009-1018.
  • Eskizeybek, V. (2012). Yüzeylerine kimyasal olarak karbon nanotüpler bağlanmış örgü cam fiber/epoksi nanokompozitlerin üretimi ve tabakalar arası kırılma davranışlarının incelenmesi. Doktora tezi, Selçuk Üniversitesi, Konya,
  • Gao X., Gillespie J.W., Jensen, R.E., Li, V., Haque B.Z., McKnight S. M., (2015).Effect of fiber surface texture on the mechanical properties of glass fiber reinforced epoxy composite. Composites: Part A, 74, 10-17.
  • Harhasha, M., Gilbertb, R.R., Hartmannb, S., Heinz, P., (2020). Experimental characterization, analytical and numerical investigations of metal/polymer/metal sandwich composites – Part 2: Free bending. Composite Structures, 232, 1-15.
  • Hou, P., Zhao, a., Wu, W., Huan, H., Li, C., Wang, S., Zhao, H., (2018). Failure mechanism of glass-fiber reinforced laminates influenced by the copper film in three-point bending. International Journal of Adhesion and Adhesives, 84, 368-377.
  • Hussain, M., Khan, R., Abbas, N., (2019). Experimental and computational studies on honeycomb sandwich structures unde static and fatigue bending load. Composite Structures, Journal of King Saud University-Science, 31, 222-229.
  • Iyer, V.S., Chatterjee, R., Ramya, M., Suresh, E., Padmanabhan, K., (2017). A comparative study of the three point and four point bending behaviour of rigid foam core glass/epoxy face sheet sandwich composites. Materials Today: Proceedings 5(5), 12083-12090.
  • Krzyhak, A., Mazur, M., Gajewski, M., Drozd, K., Komorek, A., ve PrzybyBek, P., (2016). Sandwich structured composites for aeronautics: Methods of manufacturing affecting some mechanical properties. International Jour. of Aerospace Engineering, 1-10.
  • Mingze, M., Weixing, Y., Wen, J., Wei, J., Yan, C., Piao L., (2020). Fatigue behavior of composite sandwich paneles under three point bending load. Polymer Testing, 91, 1–8.
  • Mittal, G., Dhand, V., Rhee K.Y., Parkı, S., Lee, W.R., (2015). A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Indistrial and Engineering Chemistry, 21, 11-25.
  • Mortone, A., Formicola C., GiordanoM., Zarrelli M., (2010). Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposites. Composites Science and Technology, 70, 1154-1160.
  • Mostafa, A., Shankar, K., ve Morozov, E.V., (2014) Experimental, Theoretical and numerical investigation of the composite sandwich panels with PVC foam core. Applied Composite Materials, 21(4), 661-675.
  • Nayak B.A., Shubham., Prusty, R.K., Ray, B.C. (2020). Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. Materials Today: Proceedings, doi:0000000/000000000000
  • Qingyu, P., Yibin, L., Xiaodong, H., Hongzhen, L., Pingan. H., Yuanyuan. S., … Shanyi D., (2013) Interfacial enhancement of carbon fiber composites by poly (amido amine) functionalization. Composites Science and Technology, 74, 37-42
  • Shivamurthy, B., Anandhan, S., Bhat, K.U., Thimmappa, B,H,S, (2020). Structure-property reletionship of glass fabric/MWCNT/epoxy multi layered laminates. Composites Communications, 22, 1-8.
  • Sakly, A., Laksimi, A., Kebir, H., Benmedakhen, S. (2016) Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications. Engineering Failure Analysis, 68, 22-31.
  • Shin, D.K., Kim, H.C., Lee, J.J., (2014). Numerical analysis of the damage behavior of an aluminum/CFRP hybrid beam under three point bending. Composites: Part B, 56, 397-404.
  • Shin, K.C, Lee, J.J, Kim, K.H., Song, M.C., Huh, J.S. (2002). Axial crush and bending collapse of an aluminium/GFRP hybrid square tube and its energy absorption capability. Composite Structures, 57, 279-287.
  • Wei, X., Wua, Q., Gao, Y., Xionga J., (2020). Bending characteristics of all-composite hexagon honeycomb sandwich beams: experimental tests and a three-dimensional failure mechanism map. Mechanics of Materials, 148, 1-10.
  • Xiong, J., Ma, L., Stocchi, A., Yang, J., Wu, L., Pan, S., (2014) Bending response of carbon fiber composite sandwich beams with three dimensional honeycomb cores, Composite Structures 108, 234-242.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Berkant Dindar 0000-0003-1215-3621

Publication Date November 30, 2020
Published in Issue Year 2020

Cite

APA Dindar, B. (2020). Metal-Cam fiber/Epoksi/ÇDKNT Sandviç Panellerin Eğilme Davranışlarının Deneysel Olarak Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi249-253. https://doi.org/10.31590/ejosat.822564